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EXCUTIVE SUMMARY 

 

Connected and autonomous vehicles (CAVs) are an emerging technology that has great 

potential for increasing road capacity and reducing traffic incidents, congestion, fuel/energy 

consumption as well as emission, all of which may support safer and more reliable and efficient 

(and potentially sustainable) transportation systems. Given that transportation network plays a key 

role in a supply chain system in terms of its performance and cost, CAVs will ultimately change 

many aspects of a supply chain system. While the effects of CAVs on transportation network have 

been extensively studied through simulations or empirical data, only a limited number of studies 

have been conducted to investigate potential opportunities (or challenges) that may arise from the 

introduction/adoption of CAVs in the context of supply chain design, operation and performance. 

Moreover, their quantitative effect on a supply chain system has yet to be explored in any depth.  

This project proposes a simulation framework that quantitatively assesses the direct and 

indirect effects of CAVs on a supply chain system by varying the levels of CAV market penetration 

and driverless truck adoption. To quantify CAV effects on transportation network, this project first 

collects secondary data and adopts simulation parameters and equations from existing literature. 

The results from transportation analysis are then incorporated into supply chain analysis to 

evaluate how CAVs would change supply chain performance measured by total travel time, 

greenhouse gas emissions, and supply chain cost. As the performance of supply chain systems 

involving perishable or semi-perishable products is highly sensitive to CAV market penetration 

rate and driverless truck adoption rate mainly because of reduced travel time, this project uses 

fresh potato supply chain systems as an illustrative example. The case study results indicate that 

CAVs can greatly improve supply chain performance directly and indirectly by decreasing total 

travel time and supply chain costs, whereas emissions are reduced primarily through the adoption 

of driverless trucks in the supply chain system. The effect of CAVs on supply chain performance 

becomes even greater when commodities travel longer distances. Moreover, with the adoption of 

connected and autonomous vehicles, the geographic distribution of the supply chain system can 

be extended. This project will allow supply chain managers (and grocery delivery companies) to 

better understand how supply chain design and operation could be transformed and reoptimized in 

response to the introduction of CAV technologies. The research outcomes would help them better 

utilize the opportunities and address possible challenges that may arise as a result of CAVs. 
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Chapter 1.  Introduction 

1.1 Problem Statement 

Transportation is a key function of supply chain systems in that it creates spatial links 

between two nodes (e.g., production site and short-term storage; distribution center and retailer) 

and supports the movement of goods from raw-material suppliers to end-users. Freight 

transportation costs account for a large percentage of the total supply chain cost. Any form of 

disruptions to or opportunities for transportation systems may interrupt or improve the flow of 

commodities, thus affecting the performance of a supply chain system [1]. Connected and 

autonomous vehicles (CAVs) are a transformative technology in the transportation industry and 

are identified as one of the twelve disruptive technologies that will “transform life, business, and 

the global economy” in the coming years [2]. By combining autonomous technology (that enables 

all driving tasks without human intervention) with connected vehicle technology (that enables 

bidirectional communication with the surrounding traffic conditions) [3], CAVs may present great 

potential for improving the capacity, safety, efficiency, and stability of transportation systems with 

lower environmental impact. In addition, CAVs are expected to constitute about 30% of total 

vehicles, 40% of all vehicle travels, and 50% of vehicle sales by 2040 [4]. Although future CAV 

market penetration rate is highly uncertain, its market penetration rate will continue to increase in 

the coming decades given the accelerated pace of CAV technological change. In light of potential 

changes in transportation systems that CAVs will bring about as well as their increasing feasibility 

in the near future, CAVs will ultimately transform supply chain systems in many different ways. 

Thus, it is critical for understanding the direct and indirect effects of CAVs on supply chain 

performance to better prepare for and respond to the changes resulting from CAVs. Quantitative 

assessment of the impact of CAVs on supply chain performance is specifically necessary for 

finding optimal supply chain design and management, as the optimization process requires 

quantitative information.  

1.2 Objectives 

The objective of this report is to propose a simulation framework for quantitatively 

assessing the effect of CAVs on supply chain at different levels of CAV market penetration and 

driverless truck adoption. The framework is illustrated with fresh potato supply chain systems in 

which all potatoes are produced in the State of Washington, U.S.A., and delivered to other states. 

These supply chain systems are selected because systems involving perishable or semi-perishable 

products would greatly benefit from the introduction of CAVs and their performance may be 

highly sensitive to CAV market penetration rate and driverless truck adoption rate. The proposed 

framework will provide quantitative information that allows supply chain managers to better 

understand how supply chain design and management should be transformed in response to the 

introduction/adoption of CAVs to optimize the flow of goods and freights. 

1.3 Expected Contributions 

To accomplish these objectives, the following tasks have been conducted:  

(1) Summarize existing studies that have examined CAV effects on transportation networks 

and supply chain systems and collect the secondary data; 
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(2) Develop simulation framework that quantitatively assesses the direct and indirect 

effects of CAVs on supply chain system performance; 

(3) Illustrate the proposed framework with fresh potato supply chain systems located in the 

State of Washington, USA. 

1.4 Report Overview 

The remainder of this report is organized as follows. Section 2 summarizes existing studies 

that have examined CAV effects on transportation networks and supply chain systems. Following 

this, the conceptual and simulation framework that quantitatively assesses the direct and indirect 

effects of CAVs on supply chain system performance is described. The fourth section illustrates 

the proposed framework with fresh potato supply chain systems located in the State of Washington, 

U.S.A., and the case study results are then presented. Finally, we conclude with a general 

discussion of the findings.  
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Chapter 2.  Literature Review 

2.1 Introduction 

This chapter provides a review of the literature on the effects of CAVs on transportation 

and supply chain systems. The literature review indicated that there is a lack of quantitative 

assessment of the effect of CAVs on supply chain performance, which has motivated this project. 

In this chapter, Sections 2.2 and 2.3 illustrate the positive effects of CAVs on transportation 

systems and supply chains, respectively. Then, its negative effects are separately summarized in 

Section 2.4. Finally, Section 2.5 gives a summary of this chapter.  

2.2. Literature Review: Positive Effects of CAVs on Transportation System 

A review of the literature shows that CAVs may change the landscape of transportation 

systems by (a) increasing roadway capacity, (b) improving traffic safety, and (c) reducing fuel 

consumption and emissions. CAVs can potentially improve roadway capacity by allowing better 

utilization of roadway space [3,5]. For highways, capacity is defined as the daily maximum number 

of vehicles capable of being handled by a given highway section and is determined by road 

geometry, the number and width of lanes, inter-vehicle spacing, driver behavior, incidents, and so 

forth. [6]. Although the physical characteristics of a highway section remain the same, CAVs may 

change other factors relevant to drivers, thereby increasing highway capacity. Shorter headways 

or spacing between vehicles can be achieved through sensors that constantly monitor leading 

vehicles and control acceleration/deceleration [4]. Connected vehicle technology enables 

communication between nearby vehicles and reduces uncertainties in their behaviors, which leads 

to significant reduction in reaction time and smoother braking without compromising safety [7]. 

Moreover, unlike human-driven vehicles, road geometry (e.g., curved or narrow lanes) does not 

affect the speed of CAVs, allowing smoother traffic flows. In arterial or local roads, the features 

of CAVs further enable smaller startup lost times and idle times at signalized intersections and 

result in much less intersection delay. As such, road capacity can be greatly increased by the 

introduction of CAVs [8]. The effects of CAVs on road capacity have been extensively studied 

often through microscopic traffic simulations to incorporate driving behaviors in CAVs, and it has 

been revealed that even an intermediate penetration rate (e.g., 40%) of CAVs could improve road 

capacity significantly. Therefore, increased roadway capacity resulting from CAVs may 

substantially reduce delay and congestion, thus enabling more reliable and reduced travel times 

[9,10]. Subsequently, the flow of goods in supply chain systems can be more expedited and be 

more reliably predicted, which may affect routing decisions and travel time and ultimately expand 

the geographic areas of supply chain systems.   

CAVs are also expected to improve traffic safety by reducing traffic conflicts [11]. 

Papadoulis et al. [12] found that the estimated traffic conflicts could be reduced up to 94% in a 

complete CAV traffic environment. CAVs may reduce the number of vehicle crashes and 

secondary incidents by eliminating human errors in driving [5] which account for 94% of vehicle 

crashes [13]. Vehicle crashes may produce physical impedance by blocking one or more lanes and 

distract other drivers passing through the sites, both of which contribute to traffic flow and delay. 

Thus, 25% of traffic congestion is attributed to traffic incidents [14]. By reducing traffic incidents 

and the associated delays, CAVs may enable safer and more efficient transportation systems. 

Although it is controversial that CAVs may increase traffic demand and the total vehicle kilometer 
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traveled (the amount of travel for all vehicles in a geographic region over a given period of time), 

the benefits of CAVs associated with increased roadway capacity and traffic incident reduction 

may offset the negative impact of increased demand on traffic congestion. Thus, from a supply 

chain management perspective, CAVs promise to ensure the safety of truck drivers, the reduction 

in damaged products during transportation, and the efficient and timely delivery of commodities 

between nodes.  

CAVs provide additional opportunities for reducing fuel consumption and emissions 

through eco-driving (e.g., optimized acceleration and deceleration behaviors, minimized repeated 

braking cycles) [11]. CAVs may also reduce the fuel wasted during traffic congestion by lowering 

traffic incident rates and improving road capacity and traffic flow. Moreover, a reduction in 

aerodynamic drag induced by platooning CAV heavy trucks may also contribute to the reduction 

in fuel consumption and emissions [15]. In this context, a supply chain system utilizing CAVs may 

reduce total fuel/energy consumption and negative environmental impact during its operation 

while decreasing transportation costs as a result of the fuel efficiency of CAVs. As illustrated 

above, the effects of CAVs on transportation systems are categorized into three aspects – roadway 

capacity, traffic safety, and fuel consumption and emissions. The studies relevant to each aspect 

are summarized in Table 2.1. We will build on these existing studies and use the major results 

from them to formulate Transportation Analysis of the simulation framework that will be 

introduced in Section 3.3.  

Table 2.1: A summary of literature review: CAV effects on transportation systems 

Category Literature  Major results 

Roadway 

capacity  

3 CAVs can improve traffic stability and throughput. 

4 AV technologies can increase highway capacity, which 

may highly promote traffic circulation. 

5 AVs can enhance roadway capacity and reduce traffic 

congestion. 

6 AVs penetration growth can cause roadway capacity 

improvement. 

7 Average travel time is found to decrease by up to one-

fifth at the 90% AV market penetration level. 

8 The introduction of CAVs can mitigate communication 

delays, and thus greatly increase road capacity and 

safety. 

10 CAVs promise numerous improvements to vehicular 

traffic: an increase in both highway capacity and traffic 

flow through faster response times and less fuel 

consumption and pollution thanks to more foresighted 

driving. 

26 Cooperative Adaptive Cruise Control (CACC) systems 

may have the potential for producing significant 

increases in the achievable highway lane capacity. 

27 With the help of advanced artificial intelligence and 

vehicle-to-vehicle/vehicle-to-infrastructure 

communication, CAVs can keep higher speed with 
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shorter headway and drive with neighboring vehicles to 

formulate platoons. 

28 CAVs in the traffic stream can significantly enhance 

the roadway capacity, not only on basic freeways but 

also on merge and weaving segments, as the CAV 

market penetration rate increases. 

29 The introduction of CACC in mixed traffic flow can 

highly increase the highway capacity. 

30 CAVs are expected to address the safety, mobility and 

sustainability issues of current transportation systems. 

31 A higher CACC market penetration rate results in an 

increased roadway capacity. 

32 When human-driven vehicles are mixed with AVs, 

capacity utilization degrades quickly as a function of 

the share of human-driven vehicles. 

33 CACC is able to increase roadway capacity greatly 

after its market penetration reaches moderate to high 

percentages.  

34 The estimation of CAVs platoon length is of much 

importance as it is the main factor driving capacity 

improvements on freeways.  

35 A significant increase in roadway capacity is expected 

by using AVs, and this would also enable more efficient 

use of the existing transport infrastructure. 

Traffic safety 4 AVs can decrease the accident rate and the associated 

transportation cost. 

9 AVs have the potential for decreasing traffic 

congestion by reducing the time headway, enhancing 

the traffic capacity and improving the safety margins in 

car following. 

11 Driving behavior patterns in CAVs has positive effects 

on road safety. 

12 CAVs bring about compelling benefits to road safety as 

traffic conflicts significantly reduce even at relatively 

low market penetration rates. 

36 Google self-driving cars are safer than conventional 

human-driven passenger vehicles. 

37 CAV driving mode, collision location, roadside 

parking, rear-end collision, and one-way road are the 

main factors contributing to the severity level of CAV-

involved crashes. 

38 AVs improve safety significantly with high penetration 

rates, even when they travel with shorter headways to 

improve road capacity and reduce delay. 

Fuel consumption 

and emissions  

11 Driving behavior patterns in CAVs can have positive 

effects on pollutant and noise emissions. 
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15 Automation may affect road vehicle energy 

consumption and greenhouse gas emissions by causing 

changes in travel demand, vehicle design, vehicle 

operating profiles, and choices of fuels. 

44 Eco-driving can reduce fuel consumption by 10% on 

average, thereby reducing CO2 emissions from driving 

by an equivalent percentage. 

45 CAVs can significantly benefit fuel consumption 

savings, even with low levels of market penetration. 

46 CAVs improve the dampening of traffic oscillation and 

reduce fuel consumption and emissions. 

47 Fuel efficiency of a vehicle equipped with automatic 

transmission can be improved when it travels on rolling 

terrain. 

48 The driver costs and emissions can be reduced 

substantially through automation. 

49 Fuel consumption could be reduced by incorporating 

autonomous mechanisms into individual vehicles. 

50 Compared to human-driven vehicles, CAVs provide a 

feasible way of minimizing fuel consumption. 

51 Fuel efficiency is expected to increase as the 

introduction of CAVs. 

 

2.3 Literature Review: Positive Effects of CAVs on Supply Chain System 

In light of CAVs bringing about a safer, smoother, and more efficient operation of 

transportation systems in the coming decades, CAVs will also present substantial benefits for 

supply chain operation and management. Alicke et al. [16] stated that CAVs could significantly 

reduce lead times and the related operation costs while decreasing manual intervention during the 

whole process from production to final delivery in supply chain network. Heard et al. [17] 

extensively discussed the economic and environmental effects of CAVs on food supply chain 

system. They stated that CAVs could (a) decrease the quantity of energy and refrigerants used in 

distribution; (b) reduce fuel consumption and greenhouse gas (GHG) emissions; (c) lower 

marginal cost of transportation by reducing fuel use and not paying a driver wage; (d) transform 

the current post-processing food distribution model by delivering commodity directly from 

production sites to end-users; and (e) enhance profits though the increased efficiency and greater 

flexibility in vehicle deployment. Bechtsis et al. [18] also showed that automated guided vehicle 

systems could enhance supply chain normal operation and promote economic, environmental, and 

social sustainability. However, these statements in Alicke et al. (16), Heard et al. (17), and Bechtsis 

et al. (18) were not supported by any empirical or quantitative evidence. As most of current supply 

chain systems do not utilize CAVs, there is a lack of empirical evidence which supports the impact 

of CAVs on supply chain. This has motivated a simulation-based approach to assessing its impact. 

Gružauskas et al. [19] utilized a food industry logistic network model developed based on a 

specialist interview to evaluate the effect of an autonomous vehicle distribution strategy. The 

simulation results showed that the strategy reduced the transportation costs by 5% and CO2 

emission level by 22% as compared to the traditional distribution system. Bechtsis et al. [20] 
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developed simulation software tools to integrate intelligent autonomous vehicles systems into 

digital supply networks and analyzed their effect on the environmental sustainability of the supply 

networks. However, the simulation software tools lacked generalizability and did not assess other 

aspects of network performance such as unmet demands or total costs. A very limited number of 

studies have attempted to investigate the direct and indirect impact of CAVs on supply chain 

system design, operation, and performance through simulation models.  

2.4 Literature Review: Negative Effects of CAVs on Transportation and 

Supply Chain Systems 

Although CAVs have been considered a key innovation that transforms the landscape of 

transportation systems (and potentially supply chain systems) in a beneficial way, for every good 

thing there are always unintended negative consequences. As briefly mentioned earlier in this 

section, the introduction of CAVs could encourage people to drive and live farther away from 

cities where jobs are concentrated. It may induce higher transportation usage, greenhouse gas 

emissions, and oil imports [21]. Moreover, many jobs will likely be lost with a rapid transition to 

AVs. These jobs include not only driving jobs (e.g., delivery and long-haul truck drivers, bus and 

taxi drivers) but also the maintenance and support staff working at truck stops on highway [22,23]. 

Another important concern is related to liability in accidents involving AVs. It is unclear whether 

a person in an AV should bear part of the responsibility for an accident if he/she fails to use a 

manual override function [24]. If third parties involved in the design of AVs (e.g., manufacturers, 

designers, software developers) should take full or partial responsibility for an accident, how can 

liability be apportioned between them [24]? These questions should be answered to develop a legal 

framework for liability. Although it is important to consider these untended consequences in 

analyzing CAV effects on transportation and supply chain systems, it may be difficult to quantify 

such concerns and the resulting costs at present until a significant number of CAVs is introduced 

in transportation systems. Therefore, this project will focus on well-known positive effects of 

CAVs on transportation systems and propagate them through a simulation framework.       

 

2.5 Summary  

A comprehensive review of the effects of CAVs on both transportation networks and 

supply chain systems has been discussed in the preceding sections. Based on the literature review, 

CAVs have been demonstrated to be effective in providing a safer and more reliable and efficient 

traffic environment, which can ultimately enhance supply chain performance. Moreover, the 

adoption of driverless trucks in a supply chain network would directly affect system economic and 

environmental efficiency.  
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Chapter 3.  Methodology 

3.1 Introduction 

This project contributes to filling the research gaps identified in Section 2 by proposing a 

quantitative framework for assessing the effect of CAVs on supply chain performance. The 

following subsections are organized as follows. This chapter begins with constructing a conceptual 

framework showing causal relationships between independent and dependent variables. Section 

3.3 presents a simulation framework to quantitatively assess the direct and indirect effects of CAVs 

on supply chain long-term performance. Finally, Section 3.4 concludes this chapter with a 

summary. 

3.2 Conceptual Framework 

The conceptual framework introduced in this subsection is primarily used to identify causes 

and effects and to formulate their interrelationship, which is needed to develop a simulation 

framework. As described, CAVs present numerous opportunities and have far-reaching 

implications for supply chain systems. Figure 3.1 summarizes the potential effect of CAVs on a 

food supply chain system through a causal loop diagram. Independent variables are CAV market 

penetration rate and driverless truck adoption rate that represent the indirect and direct effects of 

CAVs, respectively: the use of driverless trucks in a supply chain system affects system 

performance directly, while CAVs in a traffic environment may have an indirect impact on supply 

chain performance by changing transportation-related variables. As shown in Figure 3.1, changes 

in the independent variables cause intermediate key parameters (e.g., traffic incidents [12-14], 

roadway capacity [8], travel time [9-10], driver wage [21], fuel economy [11,15], emissions 

[11,15]) to increase or decrease interactively, which will consequently affect dependent variables 

(e.g., fresh food loss, cost components, total emissions). Accordingly, this diagram is divided into 

three parts, which are defined as (a) causes (i.e., the red region), (b) processes (i.e., the green 

region), and (c) effects (i.e., the yellow region). 

More specifically, reduced traffic incidents/accidents and increased road capacity through 

the introduction of CAVs would improve transportation system reliability and traffic flow patterns, 

and therefore enable efficient and intelligent routing decisions and an optimal driving cycle of a 

supply chain system. Thus, it would greatly reduce travel time between nodes while ensuring the 

reliable delivery of products. If traditional human-driven trucks would be replaced with fully 

autonomous (or driverless) trucks (i.e., Level 4 or 5 autonomous vehicles where human drivers are 

not needed) in a supply chain system, driver wages could be excluded from total supply chain 

costs. Truck accidents during transport can also be reduced, which improves driver safety and 

reduces product losses. Moreover, driverless trucks would enable 24/7 truck service at higher 

speeds and efficiencies, thus reducing transportation time between suppliers and end-users [17]. 

Specifically, such 24/7 truck service could provide enormous benefits to perishable or semi-

perishable food supply chain systems in which the timely transport of products is a key priority. 

Given that reduced accident rates and enhanced road capacity may induce an additional reduction 

in traffic congestion and the associated travel time, CAVs would, directly and indirectly, ensure 

the expedited and efficient delivery of fresh food without its quality degradation. Therefore, waste 

disposal costs at retailers caused by bad quality products could be reduced, and at the same time, 

products could be delivered to the end-users located even farther away from the current end-user 
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locations without compromising product quality. As also shown in Figure 3.1, higher fuel economy 

of CAVs and less travel time could substantially reduce transportation costs considering that 

trucking accounts for a large portion of the supply chain transportation [25]. Lastly, CAVs may 

decrease GHG emissions during transport processes which are responsible for a substantial portion 

of total supply chain emissions.  

 

Figure 3.1: Causal loop diagram of a food supply chain system affected by CAVs (literature evidence 

supporting each causal relationship is shown next to each arrow) 

3.3 Simulation Framework  

Based on the conceptual framework, a simulation framework is proposed to quantitatively 

assess the direct and indirect effects of CAVs on supply chain performance. Figure 3.2 presents 

the proposed simulation framework. As described in the conceptual framework, CAV market 

penetration rate and driverless truck adoption rate are used as independent variables. The market 

penetration rate of CAVs in the future depends on many different factors, such as the pace of CAV 

technological maturity, customer preferences for CAVs, government policy and traffic laws, CAV 

costs, and traffic environment. On the other hand, the adoption rate of driverless trucks in a supply 

chain system is governed by the willingness of trucking companies to adopt driverless trucks, as 

transportation in a supply chain system is often handled by third parties. Although CAV market 

penetration rate may affect driverless truck adoption rate in trucking companies (and supply chain 

systems), its relationship is hardly defined because of a lack of data and substantial uncertainties. 

Therefore, it is assumed that these two variables are statistically independent in the simulation 

framework.  
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As shown in Figure 3.2, the simulation framework first assesses the effects of CAVs on 

transportation-related factors (in the Transportation Analysis stage) and incorporates the changes 

in these factors into supply chain analysis to evaluate their combined effects on supply chain 

performance (in the Supply Chain Analysis stage). In the Transportation Analysis stage, the 

indirect and direct effects of CAVs on transportation-related factors are assessed by varying the 

levels of CAV market penetration and the adoption rates of driverless trucks, respectively. Based 

on the secondary data that quantify CAV effects on highway capacity, free-flow speed, and traffic 

incidents, a CAV-involved travel time model is developed to estimate travel time for each 

transportation edge in a mixed traffic environment (Transportation Analysis I). On the other hand, 

the adoption of driverless trucks in commodity transportation can directly reduce fuel 

consumption, GHG emissions, and the likelihood of product losses induced by truck accidents 

during transport (Transportation Analysis II). In the Supply Chain Analysis stage, the outputs from 

the first stage are incorporated into supply chain analysis to assess system performance in terms 

of (a) total supply chain cost, (b) total transportation time, and (c) total GHG emissions. Detailed 

procedures for each stage will be described in the remainder of this section. 

 

Figure 3.2: Simulation framework for assessing the effects of CAVs on supply chain performance 

3.3.1 Transportation Analysis I 

Transportation Analysis I is designed to estimate the effect of CAVs on transportation 

systems, which will be utilized in assessing their indirect effects on supply chain performance.  

3.3.1.1 Highway capacity & free-flow speed 

Highway capacity enhancement in a complete or partial CAV environment has been well 

supported by recent studies. Using a mixed model experiment, Nowakowski et al. [26] found that 

CAVs could operate with 0.6 s inter-vehicle time gap, while the following time is recommended 

to be 2 -3 s for human-driven vehicles. Such shorter following gaps may enhance highway 

capacity. Talebpour and Mahmassani [3] utilized a multi-model framework to simulate the 

behaviors of different types of vehicles (i.e., human-driven vehicles, connected human-driven 

vehicles, and CAVs). The results showed that the rate of roadway capacity improvement increases 

with the CAV penetration rate. Similar results were also found in Wang et al. [27] and Adebisi et 

al. [28].  Although its positive impact on the capacities of arterial or local roads has also been well 
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studied, this report limits its scope only to the effect of CAVs on highway capacity because in 

many cases, highway system is the first choice for commodity shipments in supply chains.  

In recent years, a considerable number of studies have quantified the capacity enhancement 

of highways induced by CAVs using various modeling approaches. For example, Liu et al. [29] 

proposed an analytical equation to assess highway capacity improvement in the mixed traffic 

stream as follows:  

𝐶𝑚𝑖𝑥 =
3600

𝑃𝑙𝑒𝑎𝑑𝑒𝑟𝐻𝑊𝑙𝑒𝑎𝑑𝑒𝑟+𝑃𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝐻𝑊𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟+𝑃ℎ𝑢𝑚𝑎𝑛𝐻𝑊ℎ𝑢𝑚𝑎𝑛
                                                     (3-1) 

where Cmix = the roadway capacity measured by the number of vehicles capable of being handled 

by a given highway section per unit time; Pleader, Pfollower, and Phuman = the probabilities of any 

vehicle being a Cooperative Adaptive Cruise Control (CACC) string leader, follower, and manual 

driver, respectively; and HWleader, HWfollower, and HWhuman = the average headway of a CACC string 

leader, follower, and manual driver in seconds, respectively. Here, CACC allows CAVs to be 

driven in a cooperative manner [30]. Moreover, Xiao et al. [31] quantitatively investigated the 

influence of CACC on highway operations through a CACC model. To make it realistic, this model 

specifically considered the limitations in acceleration and deceleration capabilities of CACC 

systems by incorporating deactivation and switch to a human-driven mode when conditions are 

outside the operational design domain. Carrone et al. [32] used a traffic simulator to model mixed 

vehicle classes combined with human heterogeneity, aimed at investigating the effect of 

autonomous vehicles on a highway network at different levels of market penetration. The 

simulation results indicated that the maximum highway capacity in a completely automated 

driving environment was 30% higher than the capacity in a complete human-driven-vehicle (HDV) 

traffic environment. On the other hand, Shladover et al. [33] obtained data from a field experiment 

where participants drove CAVs and investigated time gap settings with which they were 

comfortable. Then, the distribution of time gap setting was used in microscopic simulation to 

estimate CAV effect on highway capacity. To address the issues with highly uncertain parameters 

in microscopic simulations, Sala and Soriguera [34] used four scenarios representing different 

platooning strategies (i.e., opportunistic and cooperative) with different implementations (i.e., 

optimistic and conservative). Thus, instead of providing a single value for each CAV market 

penetration rate, this model showed the range of increased highway capacity resulting from the 

four scenarios (see Table 3.1). Table 3.1 summarizes the explicit relationship between CAV 

market penetration rate and highway capacity enhancement found in the existing literature. As 

shown in the table, the estimates of highway capacity enhancement widely vary primarily because 

of different simulation approaches used in these five studies, or the assumptions made in the car-

following models and the extent of automation. This report uses the mean value of highway 

capacity enhancement at each CAV market penetration rate by assigning equal probabilities to the 

five model outcomes.   

Table 3.1: Highway capacity enhancement for different rates of CAV market penetration  

Literature  
CAV market penetration rate 

25% 50% 75% 100% 

Liu et al. [29] +6.1% +17.4% +42.4% +81.6% 

Xiao et al. [31] +6.2% +17.1% +40.0% +80.1% 

Sala and Soriguera [34] +3.4 – 15% +12 – 49% +62.5 – 184% +159 – 473% 

Shladover et al. [33] +6.0% +18% +57.5% +97% 
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Carrone et al. [32] +4% +8% +14% +30% 

To quantitatively relate the capacity of the eth highway edge (𝐶𝑎,𝑒) to its free-flow speed, 

the following equation is used [35]: 

𝑣𝑎,𝑒 =
𝐿∗𝐶𝑎,𝑒

𝑇𝑎∗𝐶𝑎,𝑒−1
                                                                                                                           (3-2)  

in which 𝑣𝑎,𝑒 = the free-flow speed of edge 𝑒 in a complete CAV traffic environment; 𝑇𝑎 = the 

time gap preferred by CAVs; and 𝐿 = the pass length of a vehicle which is the sum of vehicle 

length and inter-vehicle distance. Considering technical feasibility and perspective of road users, 

𝑇𝑎 can be assumed to be 0.5 s [35]. Moreover, given that the primary mode of transportation in 

logistics is shipments by trucks, the mean length of a truck (i.e., 18 m) with the inter-vehicle 

distance of 3 m (i.e., 𝐿 = 21 m) is used in this report [35]. It should be noted that Equation 3-2 was 

developed for the complete CAV traffic environment. As data on the free-flow speed of each edge 

in a complete HDV traffic environment is available, the free-flow speed for edge e in a mixed 

traffic environment (𝑣𝑒) can be calculated by using linear interpolation between these two extreme 

values.   

3.3.1.2 Traffic incident 

The effect of CAVs on reduced traffic incidents has been well supported by experimental 

and empirical data. Teoh and Kidd [36] tested the self-driving cars developed by Google and found 

that these cars produced 2.19 crashes per million vehicle miles traveled which was much lower 

than 6.06 crashes in Mountain View, California during the period of 2009 -2015. Xu et al. [37] 

examined the characteristics of CAV-involved traffic incidents based on the reported crashes from 

various companies and revealed that the severity of CAV-involved incidents was lower than that 

of human-driven vehicles. Some researchers have taken a simulation approach to model CAV-

involved traffic incidents. Morando et al. [38] studied the safety impact of CAVs by using a 

simulation-based surrogate safety measure approach. The results indicated that the complete CAV 

traffic environment could reduce nearly 65% of traffic incidents and the associated delay, 

subsequently enhancing traffic safety and efficiency. Similarly, Papadoulis et al. [12] utilized a 

CAV control algorithm in the standard traffic simulation software Surrogate Safety Assessment 

Model (SSAM) to assess its impact in a simulated, real-world highway environment. As shown in 

Table 3.2, traffic conflicts could be significantly reduced by increasing the market penetration rate 

of CAVs [12].   

Table 3.2: Relationship between CAV market penetration rate and traffic incident reduction index (adapted 

from [12]) 

CAV market penetration rate Estimated traffic incident reduction  

25% 12-47% 

50% 50-80% 

75% 82-92% 

100% 90-94% 

Incident severity is divided into four levels which represent slight to significant impacts on 

traffic (i.e., short to long delay time caused by incidents). Using the crash data [39], the incident 

rates and the statistical distribution of incident severity for each transportation edge can be 

obtained. As the crash data can be applied only to a traffic environment with 100% human-driven 
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vehicles, the incident rates in a mixed traffic environment should be adjusted based on either 

experimental/empirical data or simulation results as described above (e.g., Table 3.2), whereas the 

distribution of incident severity is assumed to remain the same. Similarly, the delay time associated 

with each severity level, which is the time taken from accident initiation to completion (i.e., traffic 

condition recovered to a pre-accident level), also remains the same. Decreased traffic incident rates 

induced by CAVs may reduce the number of severe incidents and the consequent delay time, 

thereby reducing traffic congestion.   

3.3.1.3 A CAV-involved travel time model 

To calculate the reduced travel time for each transportation edge induced by the 

aforementioned changes that CAVs bring about, this subsection presents a CAV-involved travel 

time model. As illustrated in Figure 3.3, a market penetration rate of CAV (𝑃𝐶𝐴𝑉) is considered an 

independent variable in assessing the indirect effect of CAVs on supply chain. For a given rate, 

the intermediate variables (i.e., the highway capacity, free-flow speed, traffic incident rate, and the 

associated delay for each edge) can be estimated by using the procedures described in Sections 

3.3.1.1 and 3.3.1.2. CAV-involved travel time for edge 𝑒 (𝑇𝑇𝑒) can be computed by the edge travel 

time under normal condition (𝑇𝑁𝑒) and the average delay time caused by traffic incidents (𝑇𝐷𝑒) 

[40] as shown in Equation 3-3a. More specifically, the travel time under normal condition (𝑇𝑁𝑒) 

can be calculated based on the speed-flow relationship recommended by the Highway Capacity 

Manual [41]. The original equation in [41] has the unit of travel time per distance (𝑇𝑁𝐻𝐶𝑀,𝑒). By 

multiplying it by the length of the edge (Le), Equation 3-3b becomes the edge 𝑒’s travel time under 

normal condition.  Equation 3-3c represents the calculation of the average incident-induced delay 

time for edge e (𝑇𝐷𝑒). 

𝑇𝑇𝑒(𝑃𝐶𝐴𝑉) =  𝑇𝑁𝑒(𝑃𝐶𝐴𝑉) + 𝑇𝐷𝑒                                                                                             (3-3a) 

𝑇𝑁𝑒(𝑃𝐶𝐴𝑉) =  𝑇𝑁𝐻𝐶𝑀,𝑒(𝑃𝐶𝐴𝑉) ∗ 𝐿𝑒  

                    = 
𝐿𝑒

𝑣𝑒(𝑃𝐶𝐴𝑉)
+ 0.25𝑇𝐿𝑒 [(𝑥𝑒(𝑃𝐶𝐴𝑉) − 1) + √(𝑥𝑒(𝑃𝐶𝐴𝑉) − 1)2 +

8𝐽𝐴

𝐶𝑒(𝑃𝐶𝐴𝑉)𝑇
𝑥𝑒(𝑃𝐶𝐴𝑉)]         

(3-3b)    

𝑇𝐷𝑒(𝑃𝐶𝐴𝑉) = ∑ 𝛼𝑠,𝑒(𝑃𝐶𝐴𝑉)𝑇𝑠,𝑒
4
𝑠=1                                                                                            (3-3c)   

where 𝑃𝐶𝐴𝑉 = the CAV market penetration rate (in percentage); ve = the free-flow speed for edge 

e in mile/h;  𝑇 = the flow period; Le = the length of edge e in miles; 𝑥𝑒 = the degree of saturation 

for edge e which can be expressed as the ratio of volume to capacity; 𝐶𝑒 = the traffic capacity (in 

vehicles per hour) for edge e; 𝐽𝐴 = the delay parameter which is used to predict the desired speed 

of traffic when demand is equal to capacity (e.g., 0.2 for one- or two-lane highway roads, 0.3 for 

more than two-lane highway road) [42,43]; 𝛼𝑠,𝑒 = the average rate of accident having the severity 

level s for travel edge e; and 𝑇𝑠,𝑒 = the mean delay time of the accident having the severity level s 

for the edge e. More detailed information on Equation 3-3b can be found in [41]. As presented in 

Equation 3-3, both 𝑇𝑁𝑒  and 𝑇𝐷𝑒 , which are affected by highway capacity and traffic incident 

respectively, are expressed as functions of CAV market penetration rate. In supply chain analysis, 

commodity shipment and delivery will be determined by the travel time of edges (𝑇𝑇𝑒). Therefore, 

by varying the market penetration rate of CAVs, the updated edge capacity and traffic incident rate 

will ultimately affect the total transport time of commodity between nodes and the associated 

supply chain performance.  
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Figure 3.3: A flow diagram of the CAV-involved travel time model 

3.3.2 Transportation Analysis Ⅱ 

In Transportation Analysis II, the number of connected and autonomous trucks adopted in 

a supply chain system will be changed to assess its impact on fuel consumption, GHG emissions, 

and truck accidents directly associated with the supply chain.  

3.3.2.1 Fuel consumption and GHG emissions 

CAV technology can enhance fuel economy and reduce GHG emissions by (a) optimizing 

acceleration and deceleration behaviors, (b) maintaining an even driving pace, and (c) eliminating 

excessive idling [44]. To assess the effect of CAVs on fuel consumption and GHG emissions, 

many existing studies have taken a simulation approach. Guo et al. [45] proposed efficient dynamic 

programming with shooting heuristic (DP-SH) as a subroutine algorithm, which could optimize 

the trajectories of CAVs and intersection controllers simultaneously. The results indicated that up 

to 31.5% of fuel consumption could be reduced by CAVs. An optimal controller for vehicles 

equipped with automatic transmission was proposed by Hu et al. [46] to improve fuel efficiency 

by optimizing vehicle acceleration and transmission gear position at the same time. This controller 

reduced fuel consumption of four-speed vehicles by 7.3 – 11.6% and six-speed vehicles by 7.7 – 

19.8%. Wadud et al. [47] presented that a maximum 20% of fuel consumption could be reduced 

by integrating autonomous mechanisms into individual vehicles, while 15 – 30% fuel savings were 

expected by Meldert and Boeck [48]. Wu et al. [49] showed that real-time advice on optimal 

acceleration and deceleration behavior could reduce fuel consumption up to 31% and 26% in 

acceleration and deceleration conditions, respectively. International Transport Forum [50] 

presented much lower values (4 – 10%) for the expected fuel savings. As revealed by the existing 

literature, fuel consumption reductions resulting from the use of CAVs vary widely between 4% 
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and 31%. It is mainly because these rates are highly sensitive to the type and level of an automation 

system, the participants and assumptions involved in the experiments, and the driving 

environment. This report takes a mean value of 17.5% as fuel consumption reduction achieved by 

replacing human-driven trucks with driverless trucks. The relationship between fuel consumption 

(fuel) in unit of L/(100 km) and CO2 emissions (emissions) in unit of g/km is assumed as follows 

[51]:  

𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 =  26.87 ∗ 𝑓𝑢𝑒𝑙 − 0.9464                                                                                      (3-4) 

Therefore, by adopting driverless trucks in a supply chain system, fuel consumption can be 

reduced by 17.5% per truck, and the consequent GHG emissions reduction can be calculated from 

Equation 3-4.   

3.3.2.2 Truck accident 

The accidents of trucks used in delivering commodities can cause various degrees of 

negative effects on supply chain operations. For example, truck accidents with slight severity (i.e., 

level 1) may lead to the delay of commodity delivery, whereas severe truck accidents (e.g., truck 

turnover) will cause truck damage, driver injury, and product losses. It is assumed that driverless 

trucks employed in a supply chain system can reduce accident rates by 90% by eliminating human 

errors [52], whereas the distribution of truck incident severity is assumed to remain the same.  As 

the accident-induced car damage and driver injury are generally covered by car insurance, this 

report does not consider repair costs and medical payments resulting from severe truck accidents 

(i.e., level 4). However, the products/commodities in the truck are assumed to be completely lost 

when a specific loading truck experiences a severe accident, and the consequent product loss cost 

will be included in total supply chain cost calculation.  

3.3.3 Supply Chain Analysis  

As discussed in the previous two subsections, CAVs can affect supply chain performance 

directly and indirectly. In this subsection, the combined effects of employing driverless trucks in 

a complete/mixed traffic environment will be examined. To quantify CAV effects on supply chain 

performance more comprehensively, three performance indicators are used, including (a) total 

transportation time, (b) total GHG emissions, and (c) total supply chain cost over a given period 

of time.  

3.3.3.1 Total transportation time  

In a supply chain system, commodities travel along the shortest (or fastest) routes between 

production sites and end-users. As the route consists of multiple transportation edges, it is essential 

to incorporate edge characteristics (e.g., length, capacity, free-flow speed, accident rate) into travel 

time calculation. In addition, the reduced number of truck drivers resulting from the adoption of 

driverless trucks may induce shorter delay time attributable to hours-of-service regulations, such 

as 11-hour driving limit and 30-minute driving break [53]. Therefore, the travel time for a route 

between nodes i and j involves both the sum of the travel times of all the edges in the route (𝑇𝑇𝑒) 

and the additional time required for human-driven vehicles owing to hours-of-service regulations 

(𝑇𝐻𝑒) as follows:                                                                      

𝑇𝐴𝑡(𝑃𝐶𝐴𝑉, 𝑁𝐶𝐴𝑉) =  ∑ {𝑁𝑟,𝑡 ∗ ∑ [𝑇𝑇𝑒(𝑃𝐶𝐴𝑉) +  𝑇𝐻𝑒(𝑁𝐶𝐴𝑉)]}𝑒∈𝑟 𝑟∈𝑅                                         (3-5) 



17 

where 𝑇𝐴𝑡 = the total transportation time over a given time period; 𝑁𝐶𝐴𝑉 = the adoption rate of 

driverless trucks in a supply chain system; 𝑟 = the transportation route between two nodes (e.g., 

between supply and processor nodes; between processor and demand nodes); 𝑁𝑟,𝑡 = the number of 

trucks that deliver commodities along the route 𝑟  over a given time period 𝑡 ; and 𝑒  = the 

transportation edge. The term (𝑇𝑇𝑒) in Equation 3-5 can be obtained from the CAV-involved travel 

time model in Section 3.3.1.3 and is expressed as a function of 𝑃𝐶𝐴𝑉. On the other hand, the term 

(𝑇𝐻𝑒) is only affected by the adoption rate of driverless trucks in the supply chain system (𝑁𝐶𝐴𝑉). 

Thus, the total transportation time between production sites and end-users (𝑇𝐴𝑖𝑗) is expressed as a 

function of 𝑃𝐶𝐴𝑉 and 𝑁𝐶𝐴𝑉. 

3.3.3.2 Total GHG emissions  

This report considers GHG emissions produced by trucks during commodity transport. The 

total GHG emissions over a given time period (𝑇𝐸𝑡) can be expressed as: 

𝑇𝐸𝑡(𝑁𝐶𝐴𝑉) = ∑ 𝑇𝐸𝑒,𝑡(𝑁𝐶𝐴𝑉)𝑒∈𝐸                                               (3-6) 

in which 𝑇𝐸𝑒,𝑡 = the GHG emissions produced by trucks traveling edge e over a given period of 

time 𝑡. The adoption rate of driverless trucks (𝑁𝐶𝐴𝑉) in a supply chain system can significantly 

reduce GHG emissions.  

3.3.3.3 Total supply chain cost 

The objective of a supply chain system is to meet customer demands while minimizing 

total cost. In this report, the total supply chain cost includes five components: fuel cost (𝐶𝑓𝑢𝑒𝑙), 

driver wage (𝐶𝑤𝑎𝑔𝑒), unmet demand penalty (𝐶𝑈𝐷𝑃), product loss cost (𝐶𝑙𝑜𝑠𝑠) resulting from truck 

accidents during transport, and waste disposal cost (𝐶𝑤𝑎𝑠𝑡𝑒). The total supply chain cost and the 

cost components are summarized in the following equations: 

𝑇𝐶𝑡(𝑁𝐶𝐴𝑉, 𝑃𝐶𝐴𝑉) = 𝐶𝑓𝑢𝑒𝑙(𝑁𝐶𝐴𝑉, 𝑃𝐶𝐴𝑉) +  𝐶𝑤𝑎𝑔𝑒(𝑁𝐶𝐴𝑉, 𝑃𝐶𝐴𝑉) +   𝐶𝑈𝐷𝑃(𝑁𝐶𝐴𝑉, 𝑃𝐶𝐴𝑉) +

 𝐶𝑙𝑜𝑠𝑠(𝑁𝐶𝐴𝑉, 𝑃𝐶𝐴𝑉) + 𝐶𝑤𝑎𝑠𝑡𝑒(𝑁𝐶𝐴𝑉, 𝑃𝐶𝐴𝑉)                                                                                (3-7a) 

𝐶𝑓𝑢𝑒𝑙(𝑁𝐶𝐴𝑉, 𝑃𝐶𝐴𝑉) = ∑ 𝐶𝑡(𝑁𝐶𝐴𝑉) ∙ 𝑥𝑡,𝑟(𝑁𝐶𝐴𝑉, 𝑃𝐶𝐴𝑉) ∙ 𝐷𝑟𝑟 (𝑁𝐶𝐴𝑉, 𝑃𝐶𝐴𝑉)                                 (3-7b)   

𝐶𝑤𝑎𝑔𝑒(𝑁𝐶𝐴𝑉, 𝑃𝐶𝐴𝑉) = ∑ 𝐶𝑑(𝑁𝐶𝐴𝑉) ∙ 𝑇𝐴𝑟(𝑁𝐶𝐴𝑉, 𝑃𝐶𝐴𝑉)𝑟                                                            (3-7c) 

𝐶𝑈𝐷𝑃(𝑁𝐶𝐴𝑉, 𝑃𝐶𝐴𝑉) = ∑ 𝐶𝑢𝑑 ∙ 𝑥𝑢,𝑑(𝑁𝐶𝐴𝑉, 𝑃𝐶𝐴𝑉)                                                       (3-7d) 

𝐶𝑙𝑜𝑠𝑠(𝑁𝐶𝐴𝑉, 𝑃𝐶𝐴𝑉) = ∑ 𝐶𝑙 ∙ 𝑥𝑙,𝑟(𝑁𝐶𝐴𝑉, 𝑃𝐶𝐴𝑉)𝑟                                                                           (3-7e) 

𝐶𝑤𝑎𝑠𝑡𝑒(𝑁𝐶𝐴𝑉, 𝑃𝐶𝐴𝑉) = ∑ 𝐶𝑤 ∙ 𝑥𝑤,𝑟(𝑁𝐶𝐴𝑉, 𝑃𝐶𝐴𝑉)𝑟                                                                      (3-7f) 

where 𝑇𝐶𝑡 = the total cost of a supply chain system over a given period of time 𝑡; 𝐶𝑡 = the unit 

fuel cost in $/mile/unit (unit can be ton for solids and gallon for liquids); 𝑥𝑡,𝑟 = the commodity 

flow along the route 𝑟; 𝐷𝑟 = the total travel distance of the route 𝑟; 𝐶𝑑 = the unit driver wage in 

$/time; 𝑇𝐴𝑟 = the total transportation time of the route 𝑟; 𝐶𝑢 = the unit unmet demand penalty in 

$/unit for not meeting demand at destination node; 𝑥𝑢,𝑑 = the unmet demand of commodity in unit 

at the demand node 𝑑; 𝐶𝑙 = the unit product loss cost in $/unit; 𝑥𝑙,𝑟 = the amount of product loss 

in unit due to truck accidents in the route 𝑟; 𝐶𝑤 = the unit waste disposal cost attributable to quality 

degradation in $/unit; and 𝑥𝑤,𝑟 = the amount of waste in unit in the route 𝑟. 
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As shown in Equation 3-7, CAVs affect the cost components directly and indirectly. The 

commodity flow (𝑥𝑡,𝑟) and the travel distance (𝐷𝑟) are expressed as a function of CAV market 

penetration rate (𝑃𝐶𝐴𝑉) because the optimized network flow and the shortest (or fastest) routes 

between nodes are found based on the edge capacity and incident rates, both of which are affected 

by 𝑃𝐶𝐴𝑉 , in network optimization. In the network optimization process, capacity-constrained 

analyses are utilized to find the shortest path between two nodes until road capacity is reached, 

and then route commodity flows to the next shortest path. In this context, the updated edge 

capacities and incident rates affect routing decisions and subsequently change the associated length 

of routes and travel time. Moreover, the total commodity flow, driver wage, and unmet demand 

are updated based on reduced travel time between production sites and end-users. The number of 

driverless trucks employed in the supply chain affects several parameters: the unit fuel cost 

resulting from the increased fuel economy of CAVs, the commodity flow attributable to 24/7 

trucking service of driverless trucks, and the driver wage that could be excluded by using driverless 

trucks. As observed in Equation 3-7e, the reduction in severe truck accidents decreases product 

losses (𝑥𝑙,𝑟) during commodity transport. Furthermore, the reduced travel time may decrease the 

amount of waste disposal of bad quality products at retailers if perishable or semi-perishable 

product is the main commodity of the supply chain system. It may also release current restrictions 

on distance a commodity can travel, thus enabling the transport of commodities over longer 

distances and expanding the geographic distribution of the supply chain system. To track quality 

changes throughout the entire supply chain system, a product quality degradation model is 

integrated with the total cost calculation. The quality degradation model is expressed as a function 

of time and temperature and formulated by [54]:  

𝑞𝑢,𝑡 = 𝑞0 − ∑ 𝑘0𝑡𝑖,𝑖+1𝑒𝑥𝑝[−𝐸𝑎/𝑅𝑇𝑖,𝑖+1]𝑚−1
𝑖=1                                                          (3-8) 

where qu,t  = the quality level of a unit product 𝑢 at time t at demand nodes; q0 = the initial quality 

level of the unit product; m = the number of nodes between production sites and retailers; k0 = a 

constant; ti,i+1 = the time spent between the ith node and the (i+1)th node; Ea = the activation energy; 

R = the gas constant; and Ti,i+1 = the absolute temperature during the transport between the ith node 

and the (i+1)th node.  

As shown in Figure 3.4, a quality threshold (qt) is used for making decision on product 

waste disposal. If the quality of a unit product becomes lower than the threshold at time 𝑡 (i.e., qu,t 

< qt) during shipment or delivery process, it is assumed to be discarded, which causes the related 

waste disposal cost (𝐶𝑤𝑎𝑠𝑡𝑒) based on Equation 3-7f. Thus, xw,r  can be expressed as: 

𝑥𝑤,𝑟 = ∑ ∫ 𝑖𝑢,𝑡
𝑡𝑢,𝑗

𝑡𝑢,𝑖
𝑢∈{1,𝑈} 𝑑𝑡                                                                                                        (3-9) 

𝑖𝑢,𝑡 =  {
0     𝑖𝑓 𝑞𝑢,𝑡 ≥ 𝑞𝑡 

1     𝑖𝑓 𝑞𝑢,𝑡 < 𝑞𝑡  
                                                                                                         (3-10) 

in which 𝑈 = the set of products being transported along the route 𝑟; 𝑡𝑢,𝑖  = the time when the 

product 𝑢 departs from the node 𝑖;  𝑡𝑢,𝑗 = the time when the product 𝑢 arrives at the node 𝑗; and 

𝑖𝑢,𝑡 = the indicator of the quality of the product 𝑟 at time 𝑡 (i.e., 𝑖𝑢,𝑡 = 0 indicating that the quality 

is acceptable while 𝑖𝑢,𝑡 = 1 indicating that the quality is not acceptable). xw,r is dependent on both 

CAV market penetration rate and driverless truck adoption rate. For example, in Figure 3.4, a 

yellow dashed line represents the total travel time of a human-driven truck in a low CAV traffic 

environment and the corresponding quality degradation. As the quality at the destination node is 
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lower than the threshold (i.e., the green solid line), the product is assumed to be discarded. 

Compared to the yellow line, the total travel time of a driverless truck in a high CAV traffic 

environment (see the blue line in Figure 3.4) is shorter, and the product quality is acceptable at the 

destination node. A higher value of xw,r  may increase the final unmet demand, lower the 

satisfaction of customers, and increase the total cost of the supply chain  because of a large amount 

of waste disposal. Therefore, through Equation 3-8, the effect of CAVs on routing decisions and 

travel time can be explicitly addressed in 𝑡𝑖,𝑖+1  and subsequently affect the quality level of a 

product at a retailer, which is closely associated with waste disposal costs and restrictions on 

distance a commodity can travel.  

 

Figure 3.4: Schematic illustration of the quality degradation of a unit product between production site and 

final destination node 

 

3.4 Summary 

The objective of this chapter is to introduce the quantitative framework for assessing the 

effect of CAVs on supply chain long-term performance. By performing both the transportation 

analysis (see Sections 3.3.1 and 3.3.2) and supply chain analysis (see Section 3.3.3), this project 

can be utilized to model (a) total supply chain cost, (b) total transportation time, and (c) total GHG 

emissions under different levels of CAV market penetration rate and driverless truck adoption rate 

over system planning horizon. Then, in the following chapter, we illustrate this proposed 

framework and test its feasibility by using the case study of fresh potato supply chain systems.  
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Chapter 4.  Case Study 

4.1 Introduction 

In this chapter, the proposed simulation framework is illustrated with hypothetical fresh 

potato supply chain systems to (a) show the potential effect of CAVs on the systems and (b) 

demonstrate the feasibility of the proposed framework. A fresh food (specifically fresh potato) 

supply chain system is selected as an illustrative example because it is expected as a “likely early-

adopter” of CAVs because of the potential benefits and profits that CAVs would bring about [21]. 

Fresh potatoes are semi-perishable and sensitive to time and temperature in nature [55]. They 

should be delivered based on a constrained timeline to maintain the quality and quantity of 

products and lower waste disposal costs throughout the entire supply chain. Thus, waste disposal 

costs resulting from the degraded quality products could be reduced through advanced 

transportation logistics and CAVs. In this context, a fresh potato supply chain performance may 

be highly sensitive to the adoption rate of driverless trucks (i.e., the direct impact of CAVs) and 

the market penetration rate of CAVs (i.e., the indirect impact of CAVs). The rest of this chapter is 

organized as follows. Section 4.2 describes the proposed framework with the hypothetical fresh 

potato supply chain systems. Section 4.3 presents the major results and findings from this 

illustrative example. Finally, the conclusion of this chapter is summarized in Section 4.4. 

4.2 Illustrative Example: Fresh Potato Supply Chain Systems 

The main commodity of the hypothetical supply chain systems is fresh potatoes grown in the State 

of Washington, USA. Because of climate conditions and soil types, Washington produces the 

world’s highest potato yield per acre, and 20% of all U.S. potatoes are grown in Washington [56]. 

The data on county-level potato production in Washington were obtained from the United States 

Department of Agriculture website [57]. Based on the personal communication with the 

Washington State Potato Commission (WSPC) (WSPC, personal communication, May 5, 2021), 

only 10% of the total potatoes are grown for fresh potatoes, and the remaining 90% potatoes are 

processed. Moreover, 25.1% and 31.9% of the total fresh potatoes grown in Washington are 

consumed in California and Mississippi, respectively [58]. Therefore, as illustrative examples, this 

project considers two supply chain systems for fresh potatoes grown in Washington which are 

transported to California and Mississippi respectively. The locations of these three states are 

presented in Figure 4.1.   

Figure 4.2 presents the hypothetical supply chain system consisting of three types of nodes 

(i.e., potato production sites, potato distribution centers, and ultimate destinations) as well as the 

transportation edges between them. This supply chain system considers only 25.1% of the total 

fresh potatoes grown in Washington which are transported to California. The location of each 

production site is assumed to be the centroid of each county. Total 21 nodes in Washington are 

generated as potato production sites.  As distribution centers are demand-driven facilities which 

are stocked with commodities to be redistributed to destinations, this project assumes that potato 

distribution centers are located around demand nodes and collects 26 candidate distribution centers 

from Google Map. The capacity of each distribution center is assumed to be 4,536 tons of fresh 

potatoes [59]. Demand nodes are assumed to be located at the centroids of the major cities in 

California, and thus, 453 demand nodes are considered as ultimate destinations. The total demand 

of fresh potatoes in California can be obtained from USDA, and the demand for each final 
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destination node is assumed to be proportional to its population [57]. By minimizing Equation 3-

7a in a complete HDV traffic environment (i.e., 0% of CAV market penetration rate and 0% of 

driverless truck adoption rate), the optimal supply chain system layout is obtained from the Freight 

and Fuel Transportation Optimization Tool (FTOT) developed by the U.S. Department of 

Transportation Volpe Center [60]. As the results of the FTOT optimization, there are seventeen 

potato production sites, eight potato distribution centers, and 100 final destinations in the supply 

chain layout in Figure 4.2.  

 

Figure 4.1: Location of the States of Washington (WA), California (CA) and Mississippi (MS) in U.S. 

 

Figure 4.2: The layout of a hypothetical supply chain system for fresh potatoes grown in Washington and 

transported to California 
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To estimate the direct and indirect effects of CAVs on supply chain performance, this 

project considers five different levels (i.e., 0%, 25%, 50%, 75% and 100%) of CAV market 

penetration rates and driverless truck adoption rates, respectively. These two rates are independent 

variables in the proposed framework (see Figures 3.1 and 3.2). Thus, various combinations of both 

rates (i.e., total 25 representative scenarios) are generated to perform sensitivity analyses that 

assess their impacts on supply chain performance. Here, a complete HDV traffic environment is 

called the baseline scenario, whereas a complete CAV scenario indicates 100% of CAV market 

penetration rates and 100% of driverless truck adoption rates.   

To quantify CAV effects on edge capacity, traffic incident rate, fuel consumption, GHG 

emissions, and truck accidents, secondary data are collected and used. Edge capacities for different 

rates of CAV market penetration are calculated by combining edge capacities in the baseline 

scenario [60] with the mean values of the highway capacity enhancement shown in Table 3.1. 

Similarly, the traffic incident rates of each edge in a mixed-traffic environment are estimated by 

combining the crash data in the baseline scenario [39] with the mean values of traffic conflict 

reduction indices summarized in Table 3.2. Changes in fuel consumption, GHG emissions, and 

truck accidents are also captured by using the values specified in Section 3.3.2. For a human-driven 

truck, the unit driver wage (Cd) is estimated at $19.99 per hour [61], and an additional travel time 

(THe) needed for human drivers as a result of hours-of-service regulations is estimated at 20% of 

the CAV-involved travel time (𝑇𝑇𝑒) [62]. A $5,000 penalty per unit of undelivered commodity is 

assumed to avoid no-flow solution in the supply chain optimization process [60].  

In the quality degradation model, the quality threshold (qt) in Equation 3-10 is the 

appearance of potato spoilage. As shown in Figure 4.3, potato spoils faster in a higher temperature 

environment. Figure 4.3 indicates that a Gaussian function is well fitted to the experimental data 

showing the relationship between temperature and the time taken to reach potato spoilage [63]. 

The Gaussian function is expressed by [63]:   

𝑇𝑠 = 2616 ∗ 𝑒𝑥𝑝[− (
𝑡𝑒𝑚𝑝+33.76

24.2
)

2

]                                                                                           (4-1) 

where 𝑇𝑠 = the time taken to reach potato spoilage; and 𝑡𝑒𝑚𝑝 = the temperature in Celsius. To 

model potato quality degradation during the transport, temperature changes from the production 

node to the destination node are recorded for each unit of potato. If the time taken from potato 

harvest to delivery to the final destination node is greater than 𝑇𝑠, the unit of potato is discarded. 

This time is uncertain mainly because of variability in harvest time and is modeled as a normally 

distributed random variable with the mean value of 𝑇𝑠 and the coefficient of variation of 0.3. Then, 

the amount of discarded potatoes is calculated by Equation 3-9.  

As the total travel time can be reduced by increasing either CAV market penetration rate 

or driverless truck adoption rate, CAVs may reduce the total amount of discarded potatoes and the 

associated waste disposal cost. In this case study, the replenishment cycle in July is used to assess 

supply chain performance because it is within a potato harvest season in Washington (from July 

to October) and can reduce uncertainty in the time taken from potato harvest to delivery. Moreover, 

July is one of the hottest months and can highlight the effect of CAVs on waste disposal cost. 

Temperatures in July measured at every location along the transportation routes are obtained from 

weather data available at the National Oceanic and Atmospheric Administration [64]. The spatial 

distribution of temperature is shown in Figure 4.4. Finally, all the three supply chain performance 

indicators (i.e., total transportation time, total GHG emissions, and total supply chain cost) are 
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measured over a replenishment cycle. In this project, the replenishment cycle of fresh potatoes is 

assumed to be one week. 

 

Figure 4.3: Quality degradation model for fresh potatoes 

 

 

Figure 4.4: Temperature distribution over the study area: (a) maximum temperature in July and (b) 

minimum temperature in October 

4.3 Simulation Results and Discussion 

4.3.1 Supply Chain Performance Assessment   

4.3.1.1 Total transportation time 

In this subsection, the total transportation time is measured by the aggregated transportation 

time needed to transport potatoes from production nodes to destination nodes over the 

replenishment cycle. Table 4.1 lists the total transportation time over the replenishment cycle by 
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varying both CAV market penetration rates and driverless truck adoption rates. CAVs can result 

in up to 53.04% decrease in the total transportation time over the replenishment cycle. As presented 

in Table 4.1, the indirect effect of CAV on the reduced transportation time is greater than its direct 

effect. In a complete HDV traffic environment (𝑃𝐶𝐴𝑉 = 0%), the adoption of driverless trucks can 

reduce the total transportation time by up to 16.67%, whereas the total transportation time can be 

reduced by up to 43.65% in a complete CAV traffic environment (𝑃𝐶𝐴𝑉 = 100%) without adopting 

any driverless trucks (𝑁𝐶𝐴𝑉 = 0%). The results indicate that CAV traffic environment can be more 

effective in reducing total travel time than the adoption of driverless trucks in the supply chain 

network. It is mainly because the additional travel time (THe) needed for a human-driven vehicle 

is estimated at 20% of the CAV-involved travel time (TTe) in this case study. Compared to THe, 

TNe plays a larger role in reducing the total transportation time.    

Table 4.1 Total transportation time over the replenishment cycle (unit: days) 

CAV market 

penetration 

rate 

Adoption rate of driverless trucks 

0% 25% 50% 75% 100% 

0% 299.49 287.01 274.53 262.05 249.58 

25% 254.92 244.30 233.68 223.05 212.43 

50% 196.43 188.25 180.06 171.88 163.70 

75% 174.45 167.18 159.91 152.65 145.38 

100% 168.75 161.72 154.69 147.66 140.63 

 

4.3.1.2 Total GHG emissions 

The adoption of driverless trucks in the supply chain system can enhance fuel economy 

and reduce GHG emissions during commodity transport, which is considered as the direct impact 

of CAVs in this report. Figure 4.5 summarizes total GHG emissions over the replenishment cycle 

by varying only driverless truck adoption rates. The result indicates that up to 18.77% of GHG 

emissions can be reduced by completely replacing human-driven trucks with driverless trucks for 

commodity shipment and delivery. This result implies that the use of driverless trucks in the supply 

chain system could be an environmentally friendly option.  

 

Figure 4.5 Total GHG emissions over the replenishment cycle corresponding to various driverless truck 

adoption rates (unit: kilograms) 
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4.3.1.3 Total supply chain cost 

Table 4.2 lists the total supply chain costs over the replenishment cycle for all the 25 

representative scenarios. As presented in this table, both independent variables reduce the total 

supply chain cost. However, the total cost decreases at a faster rate by increasing the adoption rate 

of driverless trucks, which indicates that direct CAV effect on the total supply chain cost is greater 

than the indirect one. More detailed information about cost breakdown can be found in Tables 4.3 

and 4.4. Table 4.3 illustrates the effects of various levels of CAV market penetration on the five 

cost components (Equation 3-7) holding the driverless truck adoption rate constant at 0%. On the 

other hand, the sole effect of driverless trucks on the cost components is presented in Table 4.4. 

Reduced travel time resulting from the direct and indirect effects of CAVs leads to decreases in 

driver wage, waste disposal cost, and unmet demand penalty. However, fuel cost is mainly affected 

by the adoption rates of driverless trucks, as it is not dependent on total travel time but dependent 

on total travel distance (see Equation 3-7b), the latter of which is hardly reduced by other CAVs 

in a traffic environment. Still, fuel efficient driverless trucks can reduce fuel cost. In summary, the 

results imply that the use of driverless trucks in the supply chain system is more effective in 

reducing total cost.    

 

Table 4.2: Total supply chain cost over the replenishment cycle for the 25 representative scenarios (unit: US 

million dollars) 

CAV market 

penetration 

rate 

Driverless truck adoption rate  

0% 25% 50% 75% 100% 

0% 19.20 17.84 15.99 15.17 13.37 

25% 18.55 17.25 15.84 14.62 13.31 

50% 17.71 16.40 15.34 14.27 13.21 

75% 17.21 16.07 15.11 14.14 13.18 

100% 16.96 15.87 14.97 14.07 13.17 

Table 4.3: Supply chain cost breakdowns for various CAV market penetration rates over the replenishment 

cycle (unit: US million dollars) 

CAV market penetration rate 0% 25% 50% 75% 100% 

Fuel cost 12.80 12.80 12.80 12.80 12.80 

Waste disposal cost 0.10 0.06 0.04 0.03 0.03 

Driver wage 1.14 1.12 1.10 1.09 1.06 

Product loss cost 2.04 1.82 1.57 1.41 1.37 

Unmet demand penalty 3.12 2.75 2.20 1.88 1.70 

Table 4.4: Supply chain cost breakdowns for various driverless truck adoption rates over the replenishment 

cycle (unit: US million dollars) 

Driverless truck adoption rate 0% 25% 50% 75% 100% 

Fuel cost 12.80 12.10 11.41 11.72 11.03 

Waste disposal cost 0.10 0.09 0.08 0.06 0.06 

Driver wage 1.14 1.01 0.71 0.34 0.00 

Product loss cost 2.04 1.79 1.55 1.31 1.06 

Unmet demand penalty 3.12 2.85 2.25 1.75 1.26 
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To examine the effect of CAVs on potato quality degradation in different weather 

scenarios, the waste disposal cost in July is compared to the one measured in October. The two 

weather scenarios are chosen because these two months are within the potato harvest season in 

Washington and can reduce uncertainty in the time taken from harvest to arrival at ultimate 

destinations. Furthermore, as shown in Figure 4.5, temperature differences between these scenarios 

are large enough to show the sensitivity of the CAV effect on potato quality degradation to 

temperature. The waste disposal cost is a small component of the total supply chain cost in this 

supply chain system because potato is a semi-perishable product. For perishable products that are 

much more sensitive to temperature and time, however, it is worth performing such sensitivity 

analysis to demonstrate how CAVs can reduce waste disposal cost, thereby enhancing supply chain 

performance. Figure 4.6 presents the potato waste disposal costs in both July and October in a 

mixed-traffic environment. The adoption rate of driverless trucks is set to be 0%, as its effect on 

the total travel time and the associated waste disposal cost is less significant than CAV market 

penetration rate. As expected, higher temperature in July causes greater amount of potato spoilage, 

and waste disposal cost is greatly reduced by expediting commodity transport. However, in 

October, the reduced travel time does not bring much benefit to the waste disposal cost because 

potato spoilage rarely appears even in the baseline scenario, because of low temperature. 

Therefore, this potato supply chain case study indicates that the effect of CAVs on the reduced 

waste disposal cost becomes greater during summer.   

 

Figure 4.6 Comparison of potato waste disposal costs between two weather scenarios 

4.3.2 CAV Effects on the Number of Required Trucks  

This subsection quantifies the effect of CAVs on the number of trucks required to transport 

potatoes from production nodes to destination nodes over the replenishment cycle to illustrate how 

the reduced travel time can decrease the number of required trucks and driver wage. This 

subsection can provide an insight on how truck driver shortage can be partly resolved by CAVs so 

that supply chain managers can effectively determine the adoption of driverless trucks and the 

associated truck assignments over a given time period. Figure 4.7 presents three transportation 

routes from production nodes to destination nodes. It is assumed that the amount of potatoes 



27 

requested by the demand nodes at the beginning of the replenishment cycle should be transported 

by the end of the cycle according to the On-Time Delivery (OTD). Moreover, trucks are allowed 

to make multiple trips between the nodes during the replenishment cycle. The total number of 

trucks required to meet the OTD during the replenishment cycle for the route 𝑟 (DTr) can be 

calculated as:  

𝐷𝑇𝑟 =  
𝐶𝐴𝑟

𝑇𝐿
∗

1

𝑇𝐻𝑆/(2∗𝑇𝐴𝑟) 
                                                                                                            (4-2) 

in which CAr = the total amount of potatoes in unit transported through the route r; TL = the truck 

load in unit/veh, which is assumed to be 24 tons per truck here [60]; THS = the total time in hours 

over the replenishment cycle (i.e., 168 hs in this report); and TAr  = the travel time for the route r 

(see Equation 3-5). The travel time and total number of trucks required to transport potatoes along 

each route over the replenishment cycle are presented in Table 4.5. As shown in this table, the full 

CAV traffic environment (𝑃𝐶𝐴𝑉 = 100%  and 𝑁𝐶𝐴𝑉 = 0% ) reduces the total travel time and 

subsequently allows less trucks to be employed to meet the OTD during the cycle. Such reduction 

can be observed more clearly in the longer routes, such as Routes 1 and 2. The results indicate that 

CAVs may directly and indirectly address the issues with truck and driver shortages by reducing 

total travel time and employing driverless trucks.  

 

Figure 4.7: Selected transportation routes in the potato supply chain system 

Table 4.5: Total travel time and the number of trucks required to transport commodities for each route over 

the replenishment cycle 

Route  

Commodity 

flow 

(metric ton) 

Baseline 

scenario 

Full CAV 

scenario 

Baseline 

scenario 

Full CAV 

scenario 

Travel time (hours) Number of trucks 

1 1817.14 86.0113 38.4084 10 5 
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2 4440.19 61.014 28.0196 4 2 

3 550.85 46.8382 21.9467 1 1 

 

4.3.3 A Fresh Potato Supply Chain System Involving Longer Transportation Routes 

This subsection is designed to examine the effect of CAVs on a fresh potato supply chain system 

involving longer transportation routes. Using the same procedure described in Section 4.2, a 

hypothetical supply chain system for fresh potatoes grown in Washington and transported to 

Mississippi is developed as shown in Figure 4.8. Mississippi is chosen because (a) 31.9% of the 

fresh potatoes grown in Washington are consumed in Mississippi [58], and (b) longer-distance 

commodity shipment is required in this supply chain system, which may highlight the benefits of 

CAVs. For the purpose of comparison, only the effect of CAVs on total supply chain cost is 

assessed and presented in Table 4.6. Similar to the supply chain system having the demand nodes 

in California, the direct effect of CAVs on the total cost outweighs their indirect effect because of 

the significance of the fuel cost in the total supply chain cost calculation. In this supply chain 

system, a 39.08% reduction in the total supply chain cost is expected in a complete CAV traffic 

environment. This reduction is higher than the one observed in the supply chain system between 

Washington and California (31.80%), indicating that CAV effect becomes greater for a supply 

chain system involving longer transportation routes by reducing travel time and the consequent 

fuel cost, driver wage, waste disposal cost, and unmet demand penalty.  

 

Figure 4.8: The layout of a hypothetical supply chain system for fresh potatoes grown in Washington and 

transported to Mississippi 

Table 4.6: Total supply chain cost over the replenishment cycle (unit: US million dollars) 

CAV market 

penetration 

rate 

Adoption rate of driverless trucks 

0% 25% 50% 75% 100% 
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0% 83.20 79.13 70.34 62.95 56.74 

25% 79.28 75.13 68.29 60.26 54.12 

50% 75.96 70.30 65.38 57.90 53.30 

75% 72.10 69.85 63.34 56.42 52.15 

100% 69.35 66.69 60.23 53.23 50.68 

 

Based on personal communication with the WSPC (WSPC, personal communication, May 

5, 2021), one of the main barriers in expanding their markets (especially to the East Coast) is the 

difficulty finding long-haul truck drivers. In this context, driverless trucks may provide an 

opportunity to expand their markets. In addition, reduced travel time enables the supply chain 

layout to be extended because the amount of potatoes requested by the original demand nodes can 

be delivered before the end of the replenishment cycle. Thus, additional commodities can be 

delivered to the areas around the original destination nodes. Figure 4.9 presents the extended layout 

of the supply chain system. Using the same cost as the total supply chain cost of the baseline 

scenario (i.e., $83.20 M in Table 4.6), fresh potatoes can be delivered to thirteen additional 

destinations under the complete CAV scenario ( 𝑃𝐶𝐴𝑉 = 100%  and 𝑁𝐶𝐴𝑉 = 100% ) over the 

replenishment cycle. Specifically, the red lines in Figure 4.9 shows the newly added transportation 

routes, and additional 15% of fresh potatoes grown in Washington state can be delivered to the 

expanded markets. Therefore, CAVs also enable the extension of the geographic distribution of a 

supply chain system and bring about more profits and efficient delivery patterns, while holding 

the total cost is unchanged.  

 

Figure 4.9: Expanded markets enabled by CAVs 
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4.4 Summary 

To illustrate the proposed framework, two hypothetical fresh potato supply chain systems are used 

in this chapter. The simulation results revealed that CAVs affected supply chain performance 

directly and indirectly by reducing total supply chain cost, expediting commodity shipment and 

delivery, and decreasing GHG emissions. Furthermore, CAVs present even greater benefits to 

perishable or semi-perishable supply chain systems. Finally, CAVs enables the extension of the 

geographic distribution of a supply chain system and bring about more profits and efficient 

delivery patterns to existing systems.  
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Chapter 5.  Summary and Conclusions 

5.1 Introduction 

This project fills the research gaps in current literature by quantitatively assessing the direct 

and indirect effects of CAVs on supply chain performance. The results from this project can be 

used by supply chain managers to better understand how supply chain design and operation could 

be transformed and reoptimized in response to the introduction of CAV technologies. In this 

chapter, Section 5.2 provides a summary of the major findings of this project by presenting the 

effects of CAVs on supply chain system. Section 5.3 details the limitation of this project, as well 

as the directions that should be taken in future research in order to improve model accuracy. 

5.2 Summary and Conclusions 

This project proposed a quantitative simulation framework to assess the direct and indirect 

effects of CAVs on supply chain performance by varying the levels of driverless truck adoption 

and CAV market penetration. Supply chain performance was measured by three indicators, which 

were total transportation time, GHG emissions, and total supply chain cost. Finally, the proposed 

framework was applied to hypothetical fresh potato supply chain systems in which the expedited 

and efficient delivery of product is of vital importance because of product quality degradation over 

time. Major findings from the case study include the following: (a) CAVs can greatly improve 

supply chain performance; (b) the indirect effect of CAVs plays a more significant role in reducing 

total transportation time, whereas the decreases in total supply chain cost and GHG emissions are 

mainly induced by employing driverless trucks in the supply chain network; (c) CAVs present 

greater advantages when commodities travel longer distances; (d) CAVs allow fewer trucks to be 

employed to meet the OTD during the replenishment cycle; and (e) with the same total cost, CAVs 

provide an opportunity to expand the existing markets. In addition to these findings, driverless 

trucks may potentially resolve the issue with finding drivers who transport potatoes from 

production sites which can be often reached through unpaved roadways (WSPC, personal 

communication, May 5, 2021). In summary, CAVs have the potential for improving supply chain 

performance in many aspects, which may ultimately address the limitations of current perishable 

or semi-perishable supply chain systems and human-driven trucks.   

Given that online grocery shopping and delivery have received great attention especially 

during the COVID-19 situation (and assuming that this will be a new normal), this report on CAV 

effects on supply chain performance related to grocery products would provide even greater 

benefits to grocery delivery companies who deal with perishable or semi-perishable products 

because CAVs could address their major concerns about restrictions on distance and time a 

commodity can travel  because of product quality degradation.    

5.3 Directions for Future Research 

This project collected and utilized the secondary data from existing studies to estimate the 

effects of CAVs on various transportation-related factors (highway capacity, speed, traffic 

accident) and incorporated them into a CAV-involving travel time model (see Section 3.3.1). Thus, 

the accuracy of this proposed framework highly depends on the reliability of the results from 

existing studies. To address the current limitation, it is recommended to perform both macroscopic 

and microscopic traffic simulations to validate the study results.  
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