

Center for Advanced Multimodal Mobility Solutions and Education

UTC Project Information – CAMMSE @ UNC Charlotte	
Project Title	Deep-Learning Based Trajectory Forecast for Safety of Intersections
	with Multimodal Traffic
University	The University of Texas at Austin
Principal Investigator	Christian Claudel
PI Contact Information	(737) 484-2969 / <u>christian.claudel@utexas.edu</u>
Funding Sources and	The University of North Carolina at Charlotte: \$59,999
Amount Provided (by	The University of Texas at Austin: \$30,822
each agency or	
organization)	
Total Project Cost	\$90,821
Agency ID or Contract	
Number	
Start and End Dates	10/01/2017 - 09/30/2019
Brief Description of	With the convergence of computation, communication, sensing,
Research Project	and visualization into ever smaller and cheaper devices, the United
	States is entering in a new era of more efficient, safer and more
	affordable transportation. The recent emergence of novel
	augmented reality technologies in particular offer a formidable
	opportunity to improve the safety of traffic for all road users. In this
	proposal, our objective is to investigate the potential of augmented
	reality, in conjunction with deep-learning based image processing,
	for traffic safety at intersections, considering all possible modes of
	transportation. A major problem of a safety system is to offer
	reliable, timely warnings, with a low false detection rate. This

Center for Advanced Multimodal Mobility Solutions and Education

	somehow requires the prediction of the future trajectories of the
	users, which is the primary focus of this proposal. In this project,
	our goal is to investigate how deep learning can be used to detect
	motion cues, and estimate over a short time horizon the future
	path of road users (depending on their transportation modes) using
	real-time video data. Once estimated, these paths will be used as
	part of an augmented-reality based system, where information
	about potential conflicts is displayed in the field of view of all road
	users, through smart glasses.
Describe Implementation	
of Research Outcomes	
(or why not	
implemented)	
Place Any Photos Here	
Impacts/Benefits of	
Implementation (actual,	
not anticipated)	
Web Links	https://cammse.uncc.edu/sites/cammse.uncc.edu/files/media/CA
Reports	MMSE-UNCC-2018-UTC-Project-Information-09-Claudel.pdf
Project website	https://cammse.uncc.edu/sites/cammse.uncc.edu/files/media/CA
	MMSE-UNCC-2018-UTC-Project-Report-09-Claudel-Final.pdf