

Center for Advanced Multimodal Mobility Solutions and Education

UTC Project Information – CAMMSE @ UNC Charlotte	
Project Title	Modeling the Macroscopic Effects of Winter Maintenance
	Operations on Traffic Mobility on Washington Highways
University	Washington State University
Principal Investigator	Xianming Shi
PI Contact Information	(509)-335-7088 / <u>xianming.shi@wsu.edu</u>
Funding Sources and	The University of North Carolina at Charlotte: \$75,000
Amount Provided (by	Washington State University: \$37,505
each agency or	
organization)	
Total Project Cost	\$112,505
Agency ID or Contract	
Number	
Start and End Dates	10/01/2017 - 09/30/2019
Brief Description of	In the northern states and other cold regions, winter maintenance
Research Project	operations play a significant role in how effective or ineffective the
	transportation system is during snowy or icy weather. Data
	modeling and analytical tools are much needed to optimize
	passenger and freight movements, taking into consideration the
	impacts of winter weather as well as winter maintenance
	operations.
	Recent years have seen increased use of anti-icing strategy and
	smart snowplow technologies for highway winter maintenance
	operations. When implemented appropriately, anti-icing (a

Center for Advanced Multimodal Mobility Solutions and Education

	proactive strategy) has demonstrated significant benefits in traffic
	mobility and safety, compared with conventional deicing (a reactive
	strategy). Smart snowplow technologies have shown their benefits
	in improving the level of service on winter highways as well. The
	mobility effects of such best practices, however, remain anecdotal
	and need to be systematically investigated and quantified.
	It is the intent of this study to lay the foundational work for
	modeling the macroscopic effects of winter maintenance
	operations (including the aforementioned best practices) on traffic
	mobility in the Pacific Northwest, with the first case study
	conducted on Washington highways.
Describe Implementation	
of Research Outcomes	
(or why not	
implemented)	
Place Any Photos Here	
Impacts/Benefits of	
Implementation (actual,	
not anticipated)	
Web Links	https://cammse.uncc.edu/sites/cammse.uncc.edu/files/media/CA
Reports	MMSE-UNCC-2018-UTC-Project-Information-17-Shi.pdf
Project website	https://cammse.uncc.edu/sites/cammse.uncc.edu/files/media/CA
	MMSE-UNCC-2018-UTC-Project-Report-17-Shi-Final.pdf