

Center for Advanced Multimodal Mobility Solutions and Education

UTC Project Information – CAMMSE @ UNC Charlotte	
Project Title	Signal Timing Strategy for Displaced Left Turn Intersections
University	Texas Southern University
Principal Investigator	Yi Qi, Qun Zhao and Mehdi Azimi
PI Contact Information	(713)-313-6809 / <u>qiy@tsu.edu</u>
Funding Sources and	The University of North Carolina at Charlotte: \$54,282
Amount Provided (by	Texas Southern University: \$27,075
each agency or	
organization)	
Total Project Cost	\$81,357
Agency ID or Contract	
Number	
Start and End Dates	10/01/2018 - 09/30/2020
Brief Description of	Displaced left turn (DLT), also known as continuous flow intersection
Research Project	(CFI), is an innovative intersection designed to increase the mobility
	of an intersection by relocating its left turn lane (lanes) to the far-left
	side of the road at upstream location of the main signalized
	intersection. Since DLT is relatively new and only implemented in a
	few states, there are few existing guidelines available for designing
	DLT intersections. One of the critical elements when designing a DLT
	is the signal timing plan. An appropriate signal timing plan will
	maximum the intersection capacity, reduce congestion, and improve
	safety. The purpose of this research is to develop a comprehensive
	signal timing strategy for DLT intersections. To achieve this purpose,
	the research team will first review and summarize current design

Center for Advanced Multimodal Mobility Solutions and Education

	guidelines and research findings on how to design and optimize signal
	timing for DLT intersections. Then, a new DLT signal time design
	methodology will be proposed by considering various geometric
	configurations and traffic conditions. A DLT intersection located at
	Texas is selected as a case study location to apply and validate the
	signal timing strategy developed in this project. VISSIM simulation will
	be conducted to evaluate the developed signal timing method.
Describe Implementation	
of Research Outcomes	
(or why not	
implemented)	
Place Any Photos Here	
Impacts/Benefits of	
Implementation (actual,	
not anticipated)	
Web Links	https://cammse.uncc.edu/sites/cammse.uncc.edu/files/media/CAM
Reports	MSE-UNCC-2019-UTC-Project-Information-13-Qi.pdf
Project website	https://cammse.uncc.edu/sites/cammse.uncc.edu/files/media/CAM
	MSE-UNCC-2019-UTC-Project-Report-13-Qi-Final.pdf