

Center for Advanced Multimodal Mobility Solutions and Education

UTC Project Information – CAMMSE @ UNC Charlotte	
Project Title	Travel Time Forecasting on a Freeway Corridor: a Dynamic
	Information Fusion Model based on the Random Forests Approach
University	The University of North Carolina at Charlotte
Principal Investigator	Wei Fan
PI Contact Information	(704)-687-1222 / <u>wfan7@uncc.edu</u>
Funding Sources and	U.S. Department of Transportation: \$60,000
Amount Provided (by	The University of North Carolina at Charlotte: \$30,007
each agency or	
organization)	
Total Project Cost	\$90,007
Agency ID or Contract	
Number	
Start and End Dates	10/01/2019 - 09/30/2021
Brief Description of	In recent years, the need for traffic prediction has become
Research Project	indispensable due to the increasing congestion in the roadway
	network. To avoid congestion and to increase the utilization of the
	entire highway network can heavily rely on the ability to predict
	travel times in a timely manner. In addition, the prediction can also
	provide the drivers aggregated traffic information that may affect
	their travel plans and finally may affect the efficiency of the entire
	transportation system through individual driving decisions. The
	prediction of travel time can also reduce the waste of road
	resources. For example, travelers can change their trips from peak
	hour to non-peak hour or switch between freeways and local

Center for Advanced Multimodal Mobility Solutions and Education

streets when they believe that the expected travel delay is too long, especially when the travelers have a flexible schedule.

The travel time prediction is highly complex as it is affected by a wide variety of factors, which could include, but are not limited to the sensor captured parameters (e.g., traffic volume, speed, class and occupancy), event and incident information, segment locations, weather conditions, and signal status. A better understanding of the travel time (and also travel delay) can greatly help the decision makers plan, design, operate, and manage a more efficient highway system. In recent years, the acquisition and popularization of big data in the field of transportation, technological advances that have enabled the collection and diffusion of real-time traffic information, and the rapidly growing traffic volume and congestion, have triggered an increasing interest in traffic modeling. Different machine learning approaches such as neural network, ensemble learning and support machines have been employed by different researchers and the results indicate that such approaches to prediction are adaptable and can give better performances than traditional models. However, such machine learning methods are practically faced with an overfitting problem that is difficult to overcome. In particular, when the test conditions are greatly changed, the predicted results are often unsatisfactory.

Center for Advanced Multimodal Mobility Solutions and Education

	The Random Forests method has a very good Bias-Variance
	tradeoff which can avoid the machine learning models' biggest
	problem of overfitting. This research will develop a random forests
	method to predict the freeway corridor travel time by using the
	probe vehicle based traffic data, and therefore will gain a better
	understanding of how traffic factors might affect travel time in the
	freeway system.
Describe Implementation	
of Research Outcomes	
(or why not	
implemented)	
Place Any Photos Here	
Impacts/Benefits of	
Implementation (actual,	
not anticipated)	
Web Links	https://cammse.uncc.edu/sites/cammse.uncc.edu/files/media/CA
Reports	MMSE-UNCC-2020-UTC-Project-Information-01-Fan.pdf
 Project website 	https://cammse.uncc.edu/sites/cammse.uncc.edu/files/media/CA
	WIVISE-UNCC-2020-01C-Project-Report-01-Fan-Final.pdf