

Center for Advanced Multimodal Mobility Solutions and Education

UTC Project Information – CAMMSE @ UNC Charlotte	
Project Title	Machine Learning-based Trajectory Optimization of Connected and
	Autonomous Vehicles (CAVs)
University	The University of North Carolina at Charlotte
Principal Investigator	Wei Fan
PI Contact Information	(704)-687-1222 / <u>wfan7@uncc.edu</u>
Funding Sources and	U.S. Department of Transportation: \$60,000
Amount Provided (by	The University of North Carolina at Charlotte: \$30,007
each agency or	
organization)	
Total Project Cost	\$90,007
Agency ID or Contract	
Number	
Start and End Dates	10/01/2019 - 09/30/2021
Brief Description of	Connected and autonomous vehicle (CAV) technologies provide
Research Project	solutions to the existing problems of the transportation systems. As
	widely known, CAVs can communicate with each other so that they
	can have coordinated accelerating or decelerating movements. In
	this manner, CAVs only need a smaller headway which will lead to a
	higher roadway capacity. For signalized intersections, CAVs can
	communicate with the signal lights to adjust their speeds when
	approaching the intersection, so that they can arrive at the
	intersection during green time periods. CAVs bring with them many
	benefits including improving safety, reducing emissions and
	increasing mobility of the transportation system.

Center for Advanced Multimodal Mobility Solutions and Education

In past decades, numerous research efforts have been made to focus on modeling longitudinal driver behaviors of traditional vehicles. Most microscopic models assume that human drivers react to the stimuli from leading vehicles to keep a safe headway with a desired velocity. In recent years, with the emerging of CAVs, new car following models have been introduced to accommodate the longitudinal driving behavior of CAVs. Efforts are needed to calibrate these car following models, and the results are highly related to the data availability, calibration method, and model structure. Despite different mechanisms and software interfaces, when multiple simulation software applications are compared, it seems that errors cannot be eliminated no matter how many parameters are introduced. On the other hand, machine learning has achieved much success in recent years. It allows the agent to keep learning from observations, actions conducted, and rewards received. When presented with a sequence of states and corresponding actions, extracted from the trajectory data, the algorithm can learn how the vehicles act when being faced with varying traffic conditions. The algorithm learns by associating any state observation, such as reaction time, speed, headway, and acceleration rate. The degree by which the agent action matches the vehicle's action constitutes a reward in the learning sequence. In order to be better predict the upcoming states of CAVs under varying traffic conditions, there is a critical need to model the car

Center for Advanced Multimodal Mobility Solutions and Education

	following trajectory data using machine learning approach.
	This research will develop guidelines and recommendations for
	This research will develop guidelines and recommendations for
	calibrating CAV car following model using trajectory data, and
	therefore will leading to a better understanding of how CAVs
	operate in the freeway system.
Describe Implementation	
of Research Outcomes	
(or why not	
implemented)	
Place Any Photos Here	
Impacts/Benefits of	
Implementation (actual,	
not anticipated)	
Web Links	https://cammse.uncc.edu/sites/cammse.uncc.edu/files/media/CA
Reports	MMSE-UNCC-2020-UTC-Project-Information-04-Fan.pdf
Project website	https://cammse.uncc.edu/sites/cammse.uncc.edu/files/media/CA
	MMSE-UNCC-2020-UTC-Project-Report-04-Fan-Final.pdf