

UTC Project Information – CAMMSE @ UNC Charlotte		
Project Title	Prioritizing People - Mixed Equilibrium Assignment for AV Based on	
	Occupancy	
University	The University of Connecticut	
Principal Investigator	Nicholas Lownes	
PI Contact Information	(860)-486-2717 / nicholas.lownes@uconn.edu	
Funding Sources and	The University of North Carolina at Charlotte: \$31,113	
Amount Provided (by	The University of Connecticut: \$15,706	
each agency or		
organization)		
Total Project Cost	\$46,819	
Agency ID or Contract		
Number		
Start and End Dates	10/01/2019 – 09/30/2021	
Brief Description of	Autonomous Vehicles (AV) have the potential to revolutionize	
Research Project	transportation operations mode choice. In June 2017, Connecticut	
	Public Act No. 17-69 "An Act Concerning Autonomous Vehicles"	
	authorized the testing of AVs on Connecticut roads. In April 2018,	
	Connecticut launched the Fully Autonomous Vehicle Testing Pilot	
	Program (FAVTPP), which set the permitting and testing	
	requirements for AVs on public roads. Although there is optimism	
	that introduction of AVs will mitigate traffic congestion and vastly	
	improve safety, the transition to a completely AV fleet - which will	
	take time - presents non-trivial problems. In the United States,	
	automobiles did not begin to outnumber horses on roadways until	

the late 1920's, twenty years after the first Model T rolled off the production line. If a similar timeline for AV deployment and market penetration holds, we won't see AVs outnumber human-driven vehicles until sometime in the 1930's and won't see a completely autonomous fleet until somewhat later. This means that for the next 20+ years we will be operating in a mixed traffic environment including human-driven vehicles, occupied AVs and unoccupied AVs.

Some AVs will operate as part of a centrally owned, shared autonomous fleet in which vehicles are routed according to real-time requests similar to current human-driven e-hailing services. However, a not insignificant portion of AVs will continue to be owned by a single household. The availability of an AV in a household may allow them to own fewer vehicles at a considerable cost savings, as a single AV could be used to meet multiple household members' tripmaking needs provided it could reach the next household member in time to get them to their destination on time. This means that a significant portion of the AV travel time will be unoccupied, depending on the tripmaking needs of the household. These unoccupied AVs will impact the travel times of occupied AV and human-driven vehicles.

It seems obvious that the travel needs of occupied vehicles (AV and human-driven) should be prioritized, and that empty AVs should be

	routed to minimize the impacts on occupied vehicles. However, if
	unoccupied AVs are assigned a route that is too circuitous, it may
	not be able to meet a household's tripmaking needs – requiring
	additional vehicles and eliminating the cost savings for the
	household of owning an AV.
	The central research question of this proposal is: How do we route
	unoccupied AVs to minimize the impacts on occupied vehicles
	without disproportionally hurting households that own an AV?
	The proposed research will focus on the following topics:
	1) Mitigating travel delays experienced by occupied vehicles by
	minimizing the impact of empty AV route choice.
	2) Differential route assignment for occupied versus unoccupied
	vehicles while considering impacts of unoccupied AV route
	choice on AV owners.
	3) Application of the methodology on a Hartford, CT case study.
Describe Implementation	
of Research Outcomes	
(or why not	
implemented)	
Place Any Photos Here	
Impacts/Benefits of	
Implementation (actual,	
not anticipated)	
Web Links	https://cammse.uncc.edu/sites/cammse.uncc.edu/files/media/CA

MMSE-UNCC-2020-UTC-Project-Report-09-Lownes-Final.pdf

•	Reports	MMSE-UNCC-2020-UTC-Project-Information-09-Lownes.pdf
•	Project website	https://cammse.uncc.edu/sites/cammse.uncc.edu/files/media/CA