

Center for Advanced Multimodal Mobility Solutions and Education

UTC Project Information – CAMMSE @ UNC Charlotte	
Project Title	Predicting Paths of Controlled Pedestrians at Intersections Using
	Deep Learning Models
University	The University of Texas at Austin
Principal Investigator	Christian Claudel
PI Contact Information	(737) 484-2969 / <u>christian.claudel@utexas.edu</u>
Funding Sources and	The University of North Carolina at Charlotte: \$67,790
Amount Provided (by	The University of Texas at Austin: \$33,895
each agency or	
organization)	
Total Project Cost	\$101,685
Agency ID or Contract	
Number	
Start and End Dates	10/01/2020 - 09/30/2022
Brief Description of	Traffic safety is a critical issue for heterogeneous, multimodal
Research Project	transportation settings such as traffic intersections. In particular,
	safety of pedestrians is a very challenging problem, since
	pedestrians are particularly vulnerable to small accidents. With
	increasing numbers of autonomous and partially autonomous
	vehicles, predicting where pedestrians will be in the future is
	critical, since these vehicles need to plan safe trajectories ahead of
	time. It is also conceivable that these autonomous vehicles will
	broadcast their planned trajectories to surrounding pedestrians, to
	help coordination, giving the pedestrians safe corridors to cross
	roads, for example.

Center for Advanced Multimodal Mobility Solutions and Education

	In earlier work, the research team has investigated the Social
	Spatio-Temporal Graph Convolutional Neural Network (Social-
	STGCNN), which substitutes the need of aggregation methods by
	modeling pedestrians and vehicle interactions as a graph. This
	algorithm results in an improvement over the state of the art
	prediction algorithms by 20% on the Final Displacement Error
	(FDE), with 8.5 times less parameters and up to 48 times faster
	inference speed than previously reported methods. In addition, this
	model is data efficient, and exceeds previous state of the art on the
	ADE metric with only 20% of the training data. The present
	proposal builds on this earlier work.
	The objective of this project is to better understand how to model
	human trajectory tracking performance. Humans that receive
	guidance information are supposed to follow their assigned
	trajectories, though they may not exactly follow the assigned path.
	Their deviation from the assigned path is very important for
	collision avoidance purposes, and the goal of this project is to
	accurately capture how much deviation one can reasonably expect
	from a given human, and how do other vehicles around the
	pedestrian affect trajectory tracking.
Describe Implementation	
of Research Outcomes	
(or why not	

Center for Advanced Multimodal Mobility Solutions and Education

implemented)	
Place Any Photos Here	
Impacts/Benefits of	
Implementation (actual,	
not anticipated)	
Web Links	https://cammse.uncc.edu/sites/cammse.uncc.edu/files/media/CA
• Reports	MMSE-UNCC-2021-UTC-Project-Information-03-Claudel.pdf
Project website	https://cammse.uncc.edu/sites/cammse.uncc.edu/files/media/CA MMSE-UNCC-2021-UTC-Project-Report-03-Claudel-Final.pdf