

Center for Advanced Multimodal Mobility Solutions and Education

UTC Project Information – CAMMSE @ UNC Charlotte	
Project Title	Pedestrian Behavior and Interaction with Autonomous Vehicles
University	The University of Connecticut
Principal Investigator	Nicholas Lownes
PI Contact Information	(860)-486-2717 / <u>nicholas.lownes@uconn.edu</u>
Funding Sources and	The University of North Carolina at Charlotte: \$60,000
Amount Provided (by	The University of Connecticut: \$30,007
each agency or	
organization)	
Total Project Cost	\$90,007
Agency ID or Contract	
Number	
Start and End Dates	10/01/2020 - 09/30/2022
Brief Description of	Connected and autonomous vehicles (CAV) are advancing in many
Research Project	ways in the current automobile market, such as adaptive cruise
	control, forward collision warning, and lane detection. By 2023,
	worldwide net additions of vehicles equipped with hardware that
	could enable autonomous driving without human supervision may
	exceed 700,000 units, which is up from 137,129 units in 2018.
	McKinsey & Co estimated that self-driving vehicles would eliminate
	90% of the vehicle accidents in the United States and save up to
	US\$190 billion of the expenses related to damages and health costs
	while also saving thousands of lives. It is expected that self-driving
	technology will enable the efficient use of traffic patterns, reduce
	traffic congestion, and increase roadway capacity. CAV will have

Center for Advanced Multimodal Mobility Solutions and Education

the ability to understand the environment around them without any human involvement.

Studying the interactions between pedestrians and autonomous vehicles is challenging due to the complexity of this interaction process. Pedestrians often rely on eye contact, hand motions, or audible dialogue with human drivers to accomplish roadway crossings. However with CAVs there is no driver with whom to interact. The lack of human interaction and communication inherent with CAV technology could influence unpredictable pedestrian behavior. Autonomous vehicles are expected to be designed to attempt to overcome this challenge. Communication systems between CAV and pedestrian are being developed and tested. However, how CAVs interact with pedestrians is a relatively unexplored topic due to the difficulty in replicating pedestrian-CAV interactions in a safe manner. This study proposes the use of virtual reality (VR) as a means to overcome the safety challenges inherent in studying pedestrian-vehicle interactions and will focus on identifying any differences in pedestrian behavior when CAV are introduced to the traffic stream.

The central research question of this proposal is: Are there significant behavioral changes in the way pedestrians interact with vehicles at a crossing when a portion of the vehicles is autonomous? The proposed research will focus on the following

Center for Advanced Multimodal Mobility Solutions and Education

	topics:
	1) To determine the impact of autonomous vehicles on pedestrian
	measures such as gap acceptance, waiting time while crossing the
	road and pedestrian acceleration.
	2) Measuring any pedestrian behavior changes with the
	automation level of the vehicle.
	3) Measuring the psychophysiological (e.g., Electrodermal Activity-
	EDA, blood pressure, and heart rate change) changes of the
	pedestrians' while interacting with AV.
Describe Implementation	
of Research Outcomes	
(or why not	
implemented)	
Place Any Photos Here	
Impacts/Benefits of	
Implementation (actual,	
not anticipated)	
Web Links	https://cammse.uncc.edu/sites/cammse.uncc.edu/files/media/CA
Reports	MMSE-UNCC-2021-UTC-Project-Information-06-Lownes.pdf
• Project website	https://cammse.uncc.edu/sites/cammse.uncc.edu/files/media/CA
	MMSE-UNCC-2021-UTC-Project-Report-06-Lownes-Final.pdf
	1