

Center for Advanced Multimodal Mobility Solutions and Education

UTC Project Information – CAMMSE @ UNC Charlotte	
Project Title	Short Term Intersection Traffic Flow Forecasting
University	Texas Southern University
Principal Investigator	Yi Qi, Mehdi Azimi and Qun Zhao
PI Contact Information	(713)-313-6809 / <u>qiy@tsu.edu</u>
Funding Sources and	The University of North Carolina at Charlotte: \$55,983
Amount Provided (by	Texas Southern University: \$27,351
each agency or	
organization)	
Total Project Cost	\$83,334
Agency ID or Contract	
Number	
Start and End Dates	10/01/2020 - 09/30/2022
Brief Description of	Although there are many tools and online services, such as Google
Research Project	Maps, that can show drivers the roadway traffic conditions in real-
	time, it's often too late given that drivers may well be approaching
	the bottlenecks already. Being able to accurately predict traffic
	congestions in about a half-hour advance is very critical for advanced
	trip planning and traffic management. To address this problem, this
	study is to develop a model that can accurately forecast the traffic
	conditions at a signalized intersection up to a half-hour in advance.
	To achieve this goal, existing methods for intersection traffic flow
	forecasting will be reviewed and synthesized. Cycle by cycle traffic
	data will be collected from a real-world signalized intersection for
	model development and evaluation. New models for short term

Center for Advanced Multimodal Mobility Solutions and Education

	intersection traffic flow forecasting will be developed with different
	data mining methods. The performance of the developed models will
	be evaluated based on the collected traffic data, and the one with the
	best performance will be selected. The developed model can be used
	for advanced trip planning and traffic management. For example, it
	can help the freight and logistic companies to better plan their truck
	dispatching schedules and routes, thereby reduce their operation
	cost caused by traffic congestion.
Describe Implementation	
of Research Outcomes	
(or why not	
implemented)	
Place Any Photos Here	
Impacts/Benefits of	
Implementation (actual,	
not anticipated)	
Web Links	https://cammse.uncc.edu/sites/cammse.uncc.edu/files/media/CAM
Reports	MSE-UNCC-2021-UTC-Project-Information-08-Qi.pdf
Project website	https://cammse.uncc.edu/sites/cammse.uncc.edu/files/media/CAM
	MSE-UNCC-2021-UTC-Project-Report-08-Qi-Final.pdf