

Center for Advanced Multimodal Mobility Solutions and Education

UTC Project Information – CAMMSE @ UNC Charlotte	
Project Title	Evaluating and Comparing the Impact of Connected and
	Autonomous Vehicles on Conventional Intersections and
	Superstreets
University	The University of North Carolina at Charlotte
Principal Investigator	Wei Fan
PI Contact Information	(704)-687-1222 / <u>wfan7@uncc.edu</u>
Funding Sources and	U.S. Department of Transportation: \$60,000
Amount Provided (by	The University of North Carolina at Charlotte: \$30,007
each agency or	
organization)	
Total Project Cost	\$90,007
Agency ID or Contract	
Number	
Start and End Dates	10/01/2021 - 09/30/2022
Brief Description of	Connected and Autonomous Vehicles (CAVs) have been one of the
Research Project	most promising technologies that are expected to bring significant
	changes to the transportation infrastructures. One of the main
	features of CAVs is that they can travel on roads without human
	intervention, and by doing so, traffic crashes caused by human
	errors can be eliminated and significant economic benefits can be
	reaped. Also, with the capabilities to communicate with
	surrounding vehicles and infrastructures, CAVs can travel through
	road junctions and segments more smoothly and efficiently, which
	will, in turn, increase the road capacity and reduce fuel

Center for Advanced Multimodal Mobility Solutions and Education

consumption. To become better prepared for this transition, transportation engineers and researchers have begun to evaluate how well CAVs can perform in existing transportation infrastructures, such as freeways, on/off ramps, intersections, and roundabouts. Nevertheless, there have been few studies that have assessed the performance of CAVs in the environment of innovative intersections. The main goal of this research is to mitigate this research gap by conducting a simulation-based study to examine the operational performance of superstreets, one of the popularly implemented innovative intersection designs. This research intends to answer the following questions: 1) How the operational performances may vary between conventional intersections and superstreets in human-driven vehicles. 2) How CAVs perform in different traffic conditions. 3) At what market penetration rate do the CAVs start to improve the traffic efficiency. 4) How the performances of CAVs may differ when CAVs are enabled with different levels of capabilities. By answering the questions above, this research can provide a better understanding of the performance of CAVs at innovative intersections since many innovative intersections share similar

Center for Advanced Multimodal Mobility Solutions and Education

	design features such as displaced left turns and channelized right of
	way.
Describe Implementation	
of Research Outcomes	
(or why not	
implemented)	
Place Any Photos Here	
Impacts/Benefits of	
Implementation (actual,	
not anticipated)	
Web Links	https://cammse.uncc.edu/sites/cammse.uncc.edu/files/media/CA
Reports	MMSE-UNCC-2022-UTC-Project-Information-01-Fan.pdf
Project website	https://cammse.uncc.edu/sites/cammse.uncc.edu/files/media/CA
	MMSE-UNCC-2022-UTC-Project-Report-01-Fan-Final.pdf