

Center for Advanced Multimodal Mobility Solutions and Education

UTC Project Information – CAMMSE @ UNC Charlotte	
Project Title	Real-Time Freeway Speed Prediction Based on Deep Learning in
	Connected And Autonomous Vehicles Environment
University	The University of North Carolina at Charlotte
Principal Investigator	Wei Fan
PI Contact Information	(704)-687-1222 / <u>wfan7@uncc.edu</u>
Funding Sources and	U.S. Department of Transportation: \$60,000
Amount Provided (by	The University of North Carolina at Charlotte: \$30,006
each agency or	
organization)	
Total Project Cost	\$90,006
Agency ID or Contract	
Number	
Start and End Dates	10/01/2021 - 09/30/2022
Brief Description of	In the last few years, there has been a significant increase in the
Research Project	research of the connected autonomous vehicles (CAV) across the
	globe, perhaps due to an exponential increase in the popularity and
	usage of the artificial intelligence techniques in various
	applications. CAVs can greatly help traffic engineers manage the
	flow and mitigate traffic congestion on road networks by using the
	cooperative adaptive cruise control (CACC).
	For CAV to act more efficiently and improve mobility as well as
	alleviate traffic congestion, timely prediction of traffic flow is
	undoubtedly a critical component. A comprehensive review of the

Center for Advanced Multimodal Mobility Solutions and Education

	existing literature clearly suggests that research on CAVs has
	shifted from traditional optimization and statistical models to
	adaptive machine learning techniques. However, existing machine
	learning models may not be easily developed and directly
	applicable in this environment due to non-linear complex
	relationship between spatial and temporal data collected from the
	surroundings during the aforementioned adaptive decisions taken
	by the vehicles.
	In this project, we will develop a traffic prediction framework based
	on various deep learning models for CAVs and compared these
	models with respect to their applicability in modern smart
	transportation systems. This research will also establish the
	simulation environment for CAVs in mixed traffic scenarios with
	different market penetration rates of CAVs. The results of this study
	can greatly help traffic engineers and stakeholders better
	understand how CAV affect traffic flow and therefore improve its
	management and control.
Describe Implementation	
of Research Outcomes	
(or why not	
implemented)	
Dires Amy Dhatas Harr	
Place Any Photos Here	
Impacts/Benefits of	
Implementation (actual,	

Center for Advanced Multimodal Mobility Solutions and Education

not anticipated)	
Web Links	https://cammse.uncc.edu/sites/cammse.uncc.edu/files/media/CA
 Reports 	
 Project website 	https://cammse.uncc.edu/sites/cammse.uncc.edu/files/media/CA MMSE-UNCC-2022-UTC-Project-Report-02-Fan-Final.pdf