

Center for Advanced Multimodal Mobility Solutions and Education

UTC Project Information – CAMMSE @ UNC Charlotte	
Project Title	Developing Robust Smart Traffic Signal Control
University	The University of Texas at Austin
Principal Investigator	Randy Machemehl
PI Contact Information	(512)-471-4541 / <u>rbm@mail.utexas.edu</u>
Funding Sources and	The University of North Carolina at Charlotte: \$93,406
Amount Provided (by	Texas Department of Transportation, Austin District : \$46,703
each agency or	
organization)	
Total Project Cost	\$140,109
Agency ID or Contract	
Number	
Start and End Dates	10/01/2021 - 09/30/2023
Brief Description of	The traffic signal was born more than a century ago. Since then, the
Research Project	transportation system has become more efficient and safer with
	continued development of traffic signal control systems. Traffic
	signal control system concepts are still evolving as new technology
	is developed and implemented by both researchers and
	practitioners. Adding capacity to transportation facilities by adding
	new lanes or new alignments is very difficult in urban areas where
	congestion is most severe due to space limitations. However,
	capacity additions through enhanced urban traffic signal control
	systems are very possible and much less expensive than adding
	lanes or alignments. With the rapid development of machine
	learning technologies and lower costs of computing power,

Center for Advanced Multimodal Mobility Solutions and Education

combining machine learning technologies with traffic signal control systems represents a great opportunity to cost effectively ameliorate urban congestion. There are three broad machine learning categories, and to be specific, reinforcement learning is the one most suitable for traffic signal control system improvement. Considerable research has been done in the field of improving traffic signal control methods to enhance intersection performance by implementing reinforcement learning methods as well as its variations to single intersections, corridors, and networks. However, a robust traffic signal controller based on reinforcement learning has not been studied enough to make it practical for both normal and special conditions, e.g., traffic disturbances due to special events and traffic incidents. The project goal is to help link field implementation and lab simulation of AI-based traffic signal control in the real world. The objective is to build a robust machine learning based traffic control algorithm and a microsimulation platform to test a robust traffic signal control. The platform will help practitioners better understand the benefits of AI-based traffic signal control. The proposed work will address at least two CAMMSE research thrusts: Generate innovations in multi-modal planning and modeling for high-growth regions; Innovations to improve multi-modal connections, system integration and security.

Describe Implementation

Center for Advanced Multimodal Mobility Solutions and Education

of Research Outcomes	
(or why not	
implemented)	
Place Any Photos Here	
Impacts/Benefits of	
Implementation (actual,	
not anticipated)	
Web Links	https://cammse.uncc.edu/sites/cammse.uncc.edu/files/media/CA
Reports	MMSE-UNCC-2022-UTC-Project-Information-07-Machemehl.pdf
Project website	https://cammse.charlotte.edu/wp-
-	content/uploads/sites/191/2023/10/CAMMSE-UNCC-2022-UTC-
	Project-Report-07-Machemehl-Final.pdf