

UTC Project Information – CAMMSE @ UNC Charlotte			
Project Title	Pedestrian Behavior and Interaction with Autonomous Vehicles		
	(Phase II)		
University	The University of Connecticut		
Principal Investigator	Nicholas Lownes		
PI Contact Information	(860)-486-2717 / nicholas.lownes@uconn.edu		
Funding Sources and	The University of North Carolina at Charlotte: \$60,000		
Amount Provided (by	The University of Connecticut: \$30,007		
each agency or			
organization)			
Total Project Cost	\$90,007		
Agency ID or Contract			
Number			
Start and End Dates	10/01/2021 - 09/30/2023		
Brief Description of	Automobiles are being more advanced with improving the		
Research Project	automotive support system such as adaptive cruise control,		
	forward collision warning, lane detections, which are already		
	influencing the automotive industry. By 2023, worldwide net		
	additions of vehicles equipped with hardware that could enable		
	autonomous driving without human supervision may exceed		
	700,000 units, which is up from 137,129 units in 2018. Gartner, Inc.		
	Mc Kinsey & Co estimated that self-driving vehicles would eliminate		
	90% of the vehicle accidents in the United States and save up to		
	US\$190 billion of the expenses related to damages and health costs		
	while also saving thousands of lives. This scenario will reduce		

vehicle insurance with time. It is expected that self-driving technology will enable the efficient use of traffic patterns, reduce traffic congestion, and increase roadway capacity. Autonomous vehicles will have the ability to understand the environment around them without any human involvement. For example, the headway distance of an upcoming vehicle, presence of non-motorized road users can be tracked by an autonomous vehicle.

The interaction between pedestrian and autonomous vehicles are always challenging due to the complexity of this interaction process. While crossing a road, a pedestrian always checks the oncoming vehicles. Non-motorized users often rely on eye contact, hand motions, or audible dialogue with human drivers to accomplish roadway crossings. However, for autonomous vehicles (AVs), there is no driver with whom to interact, and in that case, the pedestrian can only check the surroundings. Human interaction and communication elimination with AV technology could influence unpredictable pedestrian behavior.

Autonomous vehicles are expected to be designed in such a manner that it can create a similar situation as the human driver does. Mutual communication between the AV and pedestrians is important to understand pedestrian behavior. Currently, intensive research activity is being conducted for the autonomous vehicle technology; however, how an autonomous vehicle would interact

	with pedestrians is relatively ignored. Hence, the study of		
	autonomous vehicle interaction with pedestrians is crucial. The first		
	step of this research work is to understand the behavior of the		
	pedestrian towards the AVs.		
	The central research question of this proposal is: Are there		
	significant behavioral changes in the way pedestrians interact with		
	vehicles at a crossing when a portion of the vehicles is autonomous?		
	The proposed research will focus on the following topics:		
	To determine the impact of autonomous vehicles on pedestrian		
	measures such as gap acceptance, waiting time while crossing		
	the road.		
	This research work compares the human behavior changes with		
	the automation level of the vehicle.		
	To understand the psychophysiological (e.g., Electrodermal		
	Activity-EDA, blood pressure, and heart rate change) changes of		
	the pedestrians' while interacting with AV.		
Describe Implementation			
of Research Outcomes			
(or why not			
implemented)			
2 4 2			
Place Any Photos Here			
Impacts/Benefits of			
Implementation (actual,			
not anticipated)			

Wel	n , ,	nle
VVPI	,,,,	IIK 🛰

Reports

https://cammse.uncc.edu/sites/cammse.uncc.edu/files/media/CA MMSE-UNCC-2022-UTC-Project-Information-09-Lownes.pdf

• Project website

https://cammse.charlotte.edu/wpcontent/uploads/sites/191/2023/10/CAMMSE-UNCC-2022-UTC-Project-Report-09-Lownes-Final.pdf